Filter Design for ℒ1 Adaptive Output-Feedback Controller

In this paper we exploit the connection between disturbance observer and ℒ<inf>1</inf> adaptive control theories. We consider ℒ<inf>1</inf> adaptive output-feedback control framework, for which the ℒ<inf>1</inf> reference controller is equivalent to the disturbance observer. Using this fact, we investigate several properties of the disturbance observer architecture, leading to various filter design methods towards verification of the stability conditions for the ℒ<inf>1</inf> adaptive output-feedback controller.

[1]  Hui Zhang,et al.  H∞ control versus disturbance-observer-based control , 1998, IEEE Trans. Ind. Electron..

[2]  R. Y. Chiang,et al.  MATHLAB - Robust Control Toolbox , 2000 .

[3]  Naira Hovakimyan,et al.  Designing a High Performance, Stable L1 Adaptive Output Feedback Controller , 2007 .

[4]  A new disturbance observer for non-minimum phase linear systems , 2008, 2008 American Control Conference.

[5]  Satoshi Komada,et al.  Analysis and classical control design of servo system using high order disturbance observer , 1997, Proceedings of the IECON'97 23rd International Conference on Industrial Electronics, Control, and Instrumentation (Cat. No.97CH36066).

[6]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[7]  Il Hong Suh,et al.  On the robustness and performance of disturbance observers for second-order systems , 2003, IEEE Trans. Autom. Control..

[8]  M. Tomizuka,et al.  Robust Digital Tracking Controller Design for High-speed Positioning Systems , 1993, 1993 American Control Conference.

[9]  A. Tits,et al.  Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics , 1991 .

[10]  Bilin Aksun Güvenç,et al.  Robust two degree-of-freedom vehicle steering controller design , 2004, IEEE Transactions on Control Systems Technology.

[11]  Xiaofeng Wang,et al.  Limiting behavior of L1 adaptive controllers , 2011 .

[12]  Naira Hovakimyan,et al.  Limiting Behavior of L 1 Adaptive Controllers , 2011 .

[13]  Shankar P. Bhattacharyya,et al.  Robust Control: The Parametric Approach , 1995 .

[14]  Yoichi Hori,et al.  Robust servosystem design with two degrees of freedom and its application to novel motion control of robot manipulators , 1993, IEEE Trans. Ind. Electron..

[15]  L. Valavani Review of "L1 Adaptive Control Theory: Guaranteed Robustness with Fast Adaptation" , 2011 .

[16]  L. Guvenc,et al.  Robustness of disturbance observers in the presence of structured real parametric uncertainty , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[17]  Jiang Wang,et al.  L1 Adaptive Controller for a Missile longitudinal Autopilot Design , 2008 .

[18]  Naira Hovakimyan,et al.  L1 Adaptive Output Feedback Controller to Systems of Unknown Dimension , 2007, 2007 American Control Conference.

[19]  Naira Hovakimyan,et al.  L1 Adaptive Output-Feedback Controller for Non-Strictly-Positive-Real Reference Systems: Missile Longitudinal Autopilot Design , 2009 .

[20]  Hyungbo Shim,et al.  An almost necessary and sufficient condition for robust stability of closed-loop systems with disturbance observer , 2009, Autom..

[21]  Masayoshi Tomizuka,et al.  Disturbance Rejection Through an External Model for Nonminimum Phase Systems , 1994 .

[22]  John C. Doyle Analysis of Feedback Systems with Structured Uncertainty , 1982 .

[23]  Naira Hovakimyan,et al.  L1 Adaptive Control Theory - Guaranteed Robustness with Fast Adaptation , 2010, Advances in design and control.