Estimating hydraulic conductivity for the Martian subsurface based on drainage patterns — A case study in the Mare Tyrrhenum Quadrangle

article i nfo Hydraulic conductivity K, as the coefficient of proportionality in Darcy's Law, is critical in understanding the past Martian hydrologic cycle, climate, and landform evolution. However, K and its spatial variability on Mars are thus far poorly constrained due to lack of accessibility. Using an innovative method based on surface drainage dissection patterns, which has been successfully tested in the Oregon Cascades on Earth, we estimated K in the Mare Tyrrhenum Quadrangle on Mars. The basic assumption is that under long-term dynamic equilibrium conditions, the overall dissection pattern in a watershed as reflected in drainage density is controlled by the interplay among surface runoff, groundwater flow, topography, and aquifer properties. K is calculated following a derivative of Darcy's Law under DuPuit-Forchheimer assumptions with drainage density D, valley depth d, recharge rate R, and aquifer thickness H as inputs. The results are consistent with the published K values and reveal spatial variability.

[1]  José Darrozes,et al.  The Black Top Hat function applied to a DEM: A tool to estimate recent incision in a mountainous watershed (Estibère Watershed, Central Pyrenees) , 2002 .

[2]  Brian M. Hynek,et al.  New data reveal mature, integrated drainage systems on Mars indicative of past precipitation , 2003 .

[3]  Alan D. Howard,et al.  The case for rainfall on a warm, wet early Mars , 2002 .

[4]  Filippo Catani,et al.  Statistical analysis of drainage density from digital terrain data , 2001 .

[5]  S. Ingebritsen,et al.  Permeability of the continental crust: Implications of geothermal data and metamorphic systems , 1999 .

[6]  Francis Nimmo,et al.  Fluvial Discharge Rates of Martian Gullies: Slope Measurements From Stereo HiRISE Images and Numerical Modeling of Sediment Transport , 2008 .

[7]  T. Dunne Hydrology, mechanics, and geomorphic implications of erosion by subsurface flow. , 1990 .

[8]  Virginia C. Gulick,et al.  Magmatic intrusions and a hydrothermal origin for fluvial valleys on Mars , 1998 .

[9]  R. Greeley,et al.  Volatile history of Mangala Valles, Mars , 1991 .

[10]  Tomasz F. Stepinski,et al.  Topographically derived maps of valley networks and drainage density in the Mare Tyrrhenum quadrangle on Mars , 2006 .

[11]  R. Forsythe,et al.  Closed drainage crater basins of the Martian highlands: Constraints on the early Martian hydrologic cycle , 1998 .

[12]  D. R. Coates,et al.  Groundwater geomorphology : the role of subsurface water in earth-surface processes and landforms , 1990 .

[13]  Roger J. Phillips,et al.  Morphometric measurements of martian valley networks from Mars Orbiter Laser Altimeter (MOLA) data , 2001 .

[14]  Wei Luo,et al.  Estimating hydraulic conductivity from drainage patterns—A case study in the Oregon Cascades , 2010 .

[15]  T. Encrenaz,et al.  Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data , 2006, Science.

[16]  W. Dietrich,et al.  Formation of Box Canyon, Idaho, by Megaflood: Implications for Seepage Erosion on Earth and Mars , 2008, Science.

[17]  M. Saar,et al.  Depth dependence of permeability in the Oregon cascades inferred from hydrogeologic, thermal, seismic, and magmatic modeling constraints , 2004 .

[18]  K. Harrison,et al.  Regionally compartmented groundwater flow on Mars , 2009 .

[19]  D. Montgomery,et al.  Analysis of Erosion Thresholds, Channel Networks, and Landscape Morphology Using a Digital Terrain Model , 1993, The Journal of Geology.

[20]  Alan D. Howard,et al.  An Intense Terminal Epoch of Widespread Fluvial Activity on Early Mars: 2. Increased Runoff and Paleolake Development , 2005 .

[21]  D. Sherrod,et al.  North-central Oregon Cascades; exploring petrologic and tectonic intimacy in a propagating intra-arc rift , 2002 .

[22]  F. Fournier Climat et érosion : la relation entre l'érosion du sol par l'eau et les précipitations atmosphériques , 1960 .

[23]  R. Phillips,et al.  Hydrological modeling of the Martian crust with application to the pressurization of aquifers , 2005 .

[24]  R. Colombo,et al.  Deriving drainage networks and catchment boundaries: a new methodology combining digital elevation data and environmental characteristics , 2003 .

[25]  R. Craddock,et al.  Geomorphic evolution of the Martian highlands through ancient fluvial processes , 1993 .

[26]  S. Ingebritsen,et al.  Rates and patterns of groundwater flow in the Cascade Range Volcanic Arc, and the effect on subsurface temperatures , 1992 .

[27]  Michael H. Carr,et al.  Formation of Martian flood features by release of water from confined aquifers , 1979 .

[28]  David Deming,et al.  Introduction to hydrogeology , 2001 .

[29]  K. Harrison,et al.  Controls on Martian hydrothermal systems: Application to valley network and magnetic anomaly formation , 2002 .

[30]  W. Luo,et al.  Computer simulation of the role of groundwater seepage in forming Martian valley networks , 2008 .

[31]  D. Montgomery,et al.  Source areas, drainage density, and channel initiation , 1989 .

[32]  Stephen M. Clifford,et al.  A model for the hydrologic and climatic behavior of water on Mars , 1993 .

[33]  D. T. Pederson Stream Piracy Revisited: A Groundwater-Sapping Solution , 2001 .

[34]  Chen Zhu Estimate of recharge from radiocarbon dating of groundwater and numerical flow and transport modeling , 2000 .

[35]  David E. Daniel,et al.  Hydraulic conductivity and waste contaminant transport in soil , 1994 .

[36]  J. J. Vries The groundwater outcrop-erosion model; evolution of the stream network in The Netherlands , 1976 .

[37]  R. Craddock,et al.  Crater morphometry and modification in the Sinus Sabaeus and Margaritifer Sinus regions of Mars , 1997 .

[38]  S. Ingebritsen,et al.  Hydrothermal systems of the Cascade Range, north-central Oregon , 1991 .

[39]  M. Zhdanov,et al.  Controls on the variability of net infiltration to desert sandstone , 2007 .

[40]  S. Squyres,et al.  Groundwater Sapping and Valley Formation on Mars , 2000 .

[41]  Tomasz F. Stepinski,et al.  Automatic mapping of valley networks on Mars , 2007, Comput. Geosci..

[42]  Alan D. Howard,et al.  Drainage basin evolution in Noachian Terra Cimmeria, Mars , 2002 .

[43]  T. Parker,et al.  The Evolution of the Martian Hydrosphere: Implications for the Fate of a Primordial Ocean and the Current State of the Northern Plains , 2001 .

[44]  R. Clark,et al.  Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data , 2000 .

[45]  D. Montgomery,et al.  Channel and Perennial Flow Initiation in Headwater Streams: Management Implications of Variability in Source-Area Size , 2007, Environmental management.

[46]  M. Carr,et al.  Martian drainage densities , 1997 .