Reliability of the predicted stand structure for clear-cut stands using optional methods: airborne laser scanning-based methods, smartphone-based forest inventory application Trestima and pre-harvest measurement tool EMO
暂无分享,去创建一个
Xiaowei Yu | Mikko Vastaranta | Jori Uusitalo | Jouni Siipilehto | Harri Lindeman | M. Vastaranta | Xiaowei Yu | J. Uusitalo | J. Siipilehto | Harri Lindeman
[1] A. Cajander,et al. Theory of forest types , 1926 .
[2] J. Siipilehto. Methods and applications for improving parameter prediction models for stand structures in Finland , 2011 .
[4] Walter Bitterlich,et al. The relascope idea. Relative measurements in forestry. , 1984 .
[5] E. Næsset. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data , 2002 .
[6] Jori Uusitalo,et al. Pre-harvest measurement of pine stands for sawing production planning. , 1997 .
[7] R. Greenberg. Biometry , 1969, The Yale Journal of Biology and Medicine.
[8] Lauri Mehtätalo,et al. Eliminating the effect of overlapping crowns from aerial inventory estimates , 2006 .
[9] A. Hudak,et al. Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data , 2008 .
[10] L. Mehtätalo,et al. Parameter recovery vs. parameter prediction for the Weibull distribution validated for Scots pine stands in Finland , 2013 .
[11] T. R. Dell,et al. Quantifying Diameter Distributions with the Weibull Function , 1973 .
[12] Jari Varjo. Latvan hukkaosan pituusmallit männylle, kuuselle ja koivulle metsurimittausta varten. , 1995 .
[13] Leo Breiman,et al. Random Forests , 2001, Machine Learning.
[14] Lauri Mehtätalo,et al. RECOVERING PLOT-SPECIFIC DIAMETER DISTRIBUTION AND HEIGHT- DIAMETER CURVE USING ALS BASED STAND CHARACTERISTICS , 2007 .
[15] M. Maltamo,et al. Estimating species-specific diameter distributions and saw log recoveries of boreal forests from airborne laser scanning data and aerial photographs : a distribution-based approach , 2008 .
[16] M. Maltamo,et al. Determination of the spatial distribution of trees from digital aerial photographs , 1998 .
[17] E. Næsset,et al. Laser scanning of forest resources: the nordic experience , 2004 .
[18] K. Korhonen,et al. Kuvioittaisen arvioinnin luotettavuus , 1970 .
[19] Joanne C. White,et al. Airborne laser scanning and digital stereo imagery measures of forest structure: comparative results and implications to forest mapping and inventory update , 2013 .
[20] H. Schreuder,et al. A Useful Bivariate Distribution for Describing Stand Structure of Tree Heights and Diameters , 1977 .
[21] Å. Tham. Structure of mixed Picea abies (L) Karst, and Betula pendula Roth and Betula pubescens Ehrh. stands in South and middle Sweden , 1988 .
[22] Keith Rennolls,et al. Bivariate distribution modeling with tree diameter and height data , 2007 .
[23] Sakari Tuominen,et al. Forest variable estimation using a high-resolution digital surface model , 2012 .
[24] Jussi Peuhkurinen,et al. Preharvest measurement of marked stands using airborne laser scanning , 2007 .
[25] V. Kivinen,et al. Constructing bivariate dbh/dead‐branch height distribution of pines for use in sawing production planning , 1998 .
[26] Jori Uusitalo,et al. An activity-based costing method for sawmilling. , 2010 .
[27] L. Mehtätalo. Height-diameter models for Scots pine and birch in Finland , 2005 .
[28] Alain Baccini,et al. yaImpute: An R Package for kNN Imputation , 2007 .
[29] Juha Hyyppä,et al. Outlook for the Next Generation’s Precision Forestry in Finland , 2014 .
[30] Ville Kankare,et al. Diameter distribution estimation with laser scanning based multisource single tree inventory , 2015 .
[31] Juha Hyyppä,et al. Multisource Single-Tree Inventory in the Prediction of Tree Quality Variables and Logging Recoveries , 2014, Remote. Sens..
[32] Jouni Siipilehto,et al. Improving the Accuracy of Predicted Basal-Area Diameter Distribution in Advanced Stands by Determining Stem Number , 1999 .
[33] J. Gove,et al. Modeling the Basal Area-size Distribution of Forest Stands: A Compatible Approach , 1998, Forest Science.
[34] Terje Gobakken,et al. Estimation of diameter and basal area distributions in coniferous forest by means of airborne laser scanner data , 2004 .
[35] M. Maltamo,et al. Modelling percentile based basal area weighted diameter distribution , 2007 .
[36] J. Hyyppä,et al. Estimation of stem volume using laser scanning-based canopy height metrics , 2006 .
[37] J. Siipilehto. A comparison of two parameter prediction methods for stand structure in Finland , 2000 .
[38] Jouko Laasasenaho. Taper curve and volume functions for pine, spruce and birch [Pinus sylvestris, Picea abies, Betula pendula, Betula pubescens] , 1982 .
[39] M. Maltamo,et al. Comparison of basal area and stem frequency diameter distribution modelling using airborne laser scanner data and calibration estimation , 2007 .
[40] Juha Hyyppä,et al. Evaluation of a Smartphone App for Forest Sample Plot Measurements , 2015 .
[41] Jyrki Kangas,et al. Kuviokohtaisten puustotunnusten ennustaminen laserkeilauksella , 1970 .
[42] Jori Uusitalo,et al. Applying the activity-based costing to cut-to-length timber harvesting and trucking. , 2009 .
[43] Juha Hyyppä,et al. Forest Inventory Using Small-Footprint Airborne LiDAR , 2008 .
[44] Jori Uusitalo,et al. Time consumption analysis of the mechanized cut-to-length harvesting system , 2006 .
[45] J. Uusitalo,et al. Impact and productivity of harvesting while retaining young understorey spruces in final cutting of downy birch. , 2012 .
[46] Matti Maltamo,et al. Use of the Weibull function in estimating the basal area dbh-distribution. , 1989 .
[47] Jaakko Heinonen,et al. Characteristics and time consumption of timber trucking in Finland , 2007 .
[48] M. Vastaranta,et al. Predicting individual tree attributes from airborne laser point clouds based on the random forests technique , 2011 .
[49] L. Mehtätalo,et al. Comparing regression estimation techniques when predicting diameter distributions of Scots pine on drained peatlands , 2007 .
[50] Thomas E. Burk,et al. Goodness-of-Fit Tests and Model Selection Procedures for Diameter Distribution Models , 1988, Forest Science.
[51] Jussi Peuhkurinen,et al. Comparing individual tree detection and the area-based statistical approach for the retrieval of forest stand characteristics using airborne laser scanning in Scots pine stands , 2011 .
[52] M. Maltamo,et al. Comparison of beta and weibull functions for modelling basal area diameter distribution in stands of pinus sylvestris and picea abies , 1995 .
[54] Annika Kangas,et al. Using Cost-Plus-Loss Analysis to Define Optimal Forest Inventory Interval and Forest Inventory Accuracy , 2012 .
[55] M. Maltamo,et al. Estimation of species-specific diameter distributions using airborne laser scanning and aerial photographs , 2008 .
[56] Quang V. Cao,et al. Predicting Parameters of a Weibull Function for Modeling Diameter Distribution , 2004, Forest Science.
[57] E. Næsset,et al. A fine-scale model for area-based predictions of tree-size-related attributes derived from LiDAR canopy heights , 2012 .
[58] Juha Hyyppä,et al. Uncertainty in timber assortment estimates predicted from forest inventory data , 2010, European Journal of Forest Research.
[59] Joanne C. White,et al. A best practices guide for generating forest inventory attributes from airborne laser scanning data using an area-based approach , 2013 .