Reliability of the predicted stand structure for clear-cut stands using optional methods: airborne laser scanning-based methods, smartphone-based forest inventory application Trestima and pre-harvest measurement tool EMO

Accurate timber assortment information is required before cuttings to optimize wood allocation and logging activities. Timber assortments can be derived from diameter-height distribution that is most often predicted from the stand characteristics provided by forest inventory. The aim of this study was to assess and compare the accuracy of three different pre-harvest inventory methods in predicting the structure of mainly Scots pine-dominated, clear-cut stands. The investigated methods were an area-based approach (ABA) based on airborne laser scanning data, the smartphone-based forest inventory Trestima app and the more conventional pre-harvest inventory method called EMO. The estimates of diameter-height distributions based on each method were compared to accurate tree taper data measured and registered by the harvester’s measurement systems during the final cut. According to our results, grid-level ABA and Trestima were generally the most accurate methods for predicting diameter-height distribution. ABA provides predictions for systematic 16 m × 16 m grids from which stand-wise characteristics are aggregated. In order to enable multimodal stand-wise distributions, distributions must be predicted for each grid cell and then aggregated for the stand level, instead of predicting a distribution from the aggregated stand-level characteristics. Trestima required a sufficient sample for reliable results. EMO provided accurate results for the dominating Scots pine but, it could not capture minor admixtures. ABA seemed rather trustworthy in predicting stand characteristics and diameter distribution of standing trees prior to harvesting. Therefore, if up-to-date ABA information is available, only limited benefits can be obtained from stand-specific inventory using Trestima or EMO in mature pine or spruce-dominated forests.

[1]  A. Cajander,et al.  Theory of forest types , 1926 .

[2]  J. Siipilehto Methods and applications for improving parameter prediction models for stand structures in Finland , 2011 .

[3]  Yksityismetsien metsävaratiedon keruuseen soveltuvilla kaukokartoitus­ menetelmillä estimoitujen puusto­ tunnusten luotettavuus , 1970 .

[4]  Walter Bitterlich,et al.  The relascope idea. Relative measurements in forestry. , 1984 .

[5]  E. Næsset Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data , 2002 .

[6]  Jori Uusitalo,et al.  Pre-harvest measurement of pine stands for sawing production planning. , 1997 .

[7]  R. Greenberg Biometry , 1969, The Yale Journal of Biology and Medicine.

[8]  Lauri Mehtätalo,et al.  Eliminating the effect of overlapping crowns from aerial inventory estimates , 2006 .

[9]  A. Hudak,et al.  Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data , 2008 .

[10]  L. Mehtätalo,et al.  Parameter recovery vs. parameter prediction for the Weibull distribution validated for Scots pine stands in Finland , 2013 .

[11]  T. R. Dell,et al.  Quantifying Diameter Distributions with the Weibull Function , 1973 .

[12]  Jari Varjo Latvan hukkaosan pituusmallit männylle, kuuselle ja koivulle metsurimittausta varten. , 1995 .

[13]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[14]  Lauri Mehtätalo,et al.  RECOVERING PLOT-SPECIFIC DIAMETER DISTRIBUTION AND HEIGHT- DIAMETER CURVE USING ALS BASED STAND CHARACTERISTICS , 2007 .

[15]  M. Maltamo,et al.  Estimating species-specific diameter distributions and saw log recoveries of boreal forests from airborne laser scanning data and aerial photographs : a distribution-based approach , 2008 .

[16]  M. Maltamo,et al.  Determination of the spatial distribution of trees from digital aerial photographs , 1998 .

[17]  E. Næsset,et al.  Laser scanning of forest resources: the nordic experience , 2004 .

[18]  K. Korhonen,et al.  Kuvioittaisen arvioinnin luotettavuus , 1970 .

[19]  Joanne C. White,et al.  Airborne laser scanning and digital stereo imagery measures of forest structure: comparative results and implications to forest mapping and inventory update , 2013 .

[20]  H. Schreuder,et al.  A Useful Bivariate Distribution for Describing Stand Structure of Tree Heights and Diameters , 1977 .

[21]  Å. Tham Structure of mixed Picea abies (L) Karst, and Betula pendula Roth and Betula pubescens Ehrh. stands in South and middle Sweden , 1988 .

[22]  Keith Rennolls,et al.  Bivariate distribution modeling with tree diameter and height data , 2007 .

[23]  Sakari Tuominen,et al.  Forest variable estimation using a high-resolution digital surface model , 2012 .

[24]  Jussi Peuhkurinen,et al.  Preharvest measurement of marked stands using airborne laser scanning , 2007 .

[25]  V. Kivinen,et al.  Constructing bivariate dbh/dead‐branch height distribution of pines for use in sawing production planning , 1998 .

[26]  Jori Uusitalo,et al.  An activity-based costing method for sawmilling. , 2010 .

[27]  L. Mehtätalo Height-diameter models for Scots pine and birch in Finland , 2005 .

[28]  Alain Baccini,et al.  yaImpute: An R Package for kNN Imputation , 2007 .

[29]  Juha Hyyppä,et al.  Outlook for the Next Generation’s Precision Forestry in Finland , 2014 .

[30]  Ville Kankare,et al.  Diameter distribution estimation with laser scanning based multisource single tree inventory , 2015 .

[31]  Juha Hyyppä,et al.  Multisource Single-Tree Inventory in the Prediction of Tree Quality Variables and Logging Recoveries , 2014, Remote. Sens..

[32]  Jouni Siipilehto,et al.  Improving the Accuracy of Predicted Basal-Area Diameter Distribution in Advanced Stands by Determining Stem Number , 1999 .

[33]  J. Gove,et al.  Modeling the Basal Area-size Distribution of Forest Stands: A Compatible Approach , 1998, Forest Science.

[34]  Terje Gobakken,et al.  Estimation of diameter and basal area distributions in coniferous forest by means of airborne laser scanner data , 2004 .

[35]  M. Maltamo,et al.  Modelling percentile based basal area weighted diameter distribution , 2007 .

[36]  J. Hyyppä,et al.  Estimation of stem volume using laser scanning-based canopy height metrics , 2006 .

[37]  J. Siipilehto A comparison of two parameter prediction methods for stand structure in Finland , 2000 .

[38]  Jouko Laasasenaho Taper curve and volume functions for pine, spruce and birch [Pinus sylvestris, Picea abies, Betula pendula, Betula pubescens] , 1982 .

[39]  M. Maltamo,et al.  Comparison of basal area and stem frequency diameter distribution modelling using airborne laser scanner data and calibration estimation , 2007 .

[40]  Juha Hyyppä,et al.  Evaluation of a Smartphone App for Forest Sample Plot Measurements , 2015 .

[41]  Jyrki Kangas,et al.  Kuviokohtaisten puustotunnusten ennustaminen laserkeilauksella , 1970 .

[42]  Jori Uusitalo,et al.  Applying the activity-based costing to cut-to-length timber harvesting and trucking. , 2009 .

[43]  Juha Hyyppä,et al.  Forest Inventory Using Small-Footprint Airborne LiDAR , 2008 .

[44]  Jori Uusitalo,et al.  Time consumption analysis of the mechanized cut-to-length harvesting system , 2006 .

[45]  J. Uusitalo,et al.  Impact and productivity of harvesting while retaining young understorey spruces in final cutting of downy birch. , 2012 .

[46]  Matti Maltamo,et al.  Use of the Weibull function in estimating the basal area dbh-distribution. , 1989 .

[47]  Jaakko Heinonen,et al.  Characteristics and time consumption of timber trucking in Finland , 2007 .

[48]  M. Vastaranta,et al.  Predicting individual tree attributes from airborne laser point clouds based on the random forests technique , 2011 .

[49]  L. Mehtätalo,et al.  Comparing regression estimation techniques when predicting diameter distributions of Scots pine on drained peatlands , 2007 .

[50]  Thomas E. Burk,et al.  Goodness-of-Fit Tests and Model Selection Procedures for Diameter Distribution Models , 1988, Forest Science.

[51]  Jussi Peuhkurinen,et al.  Comparing individual tree detection and the area-based statistical approach for the retrieval of forest stand characteristics using airborne laser scanning in Scots pine stands , 2011 .

[52]  M. Maltamo,et al.  Comparison of beta and weibull functions for modelling basal area diameter distribution in stands of pinus sylvestris and picea abies , 1995 .

[54]  Annika Kangas,et al.  Using Cost-Plus-Loss Analysis to Define Optimal Forest Inventory Interval and Forest Inventory Accuracy , 2012 .

[55]  M. Maltamo,et al.  Estimation of species-specific diameter distributions using airborne laser scanning and aerial photographs , 2008 .

[56]  Quang V. Cao,et al.  Predicting Parameters of a Weibull Function for Modeling Diameter Distribution , 2004, Forest Science.

[57]  E. Næsset,et al.  A fine-scale model for area-based predictions of tree-size-related attributes derived from LiDAR canopy heights , 2012 .

[58]  Juha Hyyppä,et al.  Uncertainty in timber assortment estimates predicted from forest inventory data , 2010, European Journal of Forest Research.

[59]  Joanne C. White,et al.  A best practices guide for generating forest inventory attributes from airborne laser scanning data using an area-based approach , 2013 .