Liquid phase deposition of TiO2 nanolayer affords CH3NH3PbI3/nanocarbon solar cells with high open-circuit voltage.

Hybrid organic/inorganic perovskite solar cells are attracting intense attention and further developments largely hinge on understanding the fundamental issues involved in the cell operation. In this paper, a liquid phase deposition (LPD) method is developed to design and grow a TiO(2) nanolayer at room temperature for carbon-based perovskite solar cells. The TiO(2) nanolayer grown on FTO glass is compact but polycrystalline consisting of tiny anatase TiO(2) nanocrystals intimately stacked together. By directly exploiting this TiO(2) nanolayer in a solar cell of TiO(2) nanolayer/CH(3)NH(3)PbI(3)/nanocarbon, we have achieved a Voc as high as 1.07 V, the highest value reported so far for hole transporter-free CH(3)NH(3)PbI(3) solar cells. This is rationalized by the slower electron injection and longer electron lifetime due to the TiO(2) nanolayer, which enhances the electron accumulation in CH(3)NH(3)PbI(3) and consequently the Voc. By employing a rutile TiO(2) nanorod (NR) array as a base structure for the LPD-TiO(2) nanolayer to support the CH(3)NH(3)PbI(3) layer, the photocurrent density is considerably increased without obviously compromising the Voc (1.01 V). As a result, the power conversion efficiency is boosted from 3.67% to 8.61%. More elaborate engineering of the TiO(2) nanolayer by LPD in conjunction with judicious interfacing with other components has the potential to achieve higher performances for this type of solar cell.

[1]  Yongcai Qiu,et al.  All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays. , 2013, Nanoscale.

[2]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[3]  E. Tronc,et al.  Size tailoring of TiO2 anatase nanoparticles in aqueous medium and synthesis of nanocomposites. Characterization by Raman spectroscopy , 2003 .

[4]  Yanhong Luo,et al.  Modified two-step deposition method for high-efficiency TiO2/CH3NH3PbI3 heterojunction solar cells. , 2014, ACS applied materials & interfaces.

[5]  Yaoguang Rong,et al.  Hole-Conductor-Free Mesoscopic TiO2/CH3NH3PbI3 Heterojunction Solar Cells Based on Anatase Nanosheets and Carbon Counter Electrodes. , 2014, The journal of physical chemistry letters.

[6]  Nam-Gyu Park,et al.  Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell , 2013 .

[7]  Lioz Etgar,et al.  Hybrid Lead Halide Iodide and Lead Halide Bromide in Efficient Hole Conductor Free Perovskite Solar Cell , 2014 .

[8]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[9]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[10]  M. Mizuhata,et al.  Growth of metal oxide thin films from aqueous solution by liquid phase deposition method , 2002 .

[11]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[12]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[13]  Nripan Mathews,et al.  Advancements in perovskite solar cells: photophysics behind the photovoltaics , 2014 .

[14]  Peng Gao,et al.  Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. , 2012, Journal of the American Chemical Society.

[15]  Juan Bisquert,et al.  Mechanism of carrier accumulation in perovskite thin-absorber solar cells , 2013, Nature Communications.

[16]  Nam-Gyu Park,et al.  Organolead Halide Perovskite: New Horizons in Solar Cell Research , 2014 .

[17]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[18]  Peng Gao,et al.  Effect of Annealing Temperature on Film Morphology of Organic–Inorganic Hybrid Pervoskite Solid‐State Solar Cells , 2014 .

[19]  Teng Zhang,et al.  Cost-efficient clamping solar cells using candle soot for hole extraction from ambipolar perovskites , 2014 .

[20]  He Yan,et al.  Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots. , 2014, Journal of the American Chemical Society.

[21]  Yaoguang Rong,et al.  Full Printable Processed Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells with Carbon Counter Electrode , 2013, Scientific Reports.

[22]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[23]  Lioz Etgar,et al.  Depleted hole conductor-free lead halide iodide heterojunction solar cells , 2013 .

[24]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[25]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[26]  M. Abramovich,et al.  Second order Raman spectrum of rutile TiO2 , 1979 .

[27]  Yanhong Luo,et al.  Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High efficiency and junction property , 2014 .

[28]  J. C. Parker,et al.  Raman microprobe study of nanophase TiO_2 and oxidation-induced spectral changes , 1990 .

[29]  Mohammad Khaja Nazeeruddin,et al.  Perovskite as light harvester: a game changer in photovoltaics. , 2014, Angewandte Chemie.

[30]  Nripan Mathews,et al.  Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. , 2014, ACS nano.

[31]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[32]  Erik M. J. Johansson,et al.  Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures , 2013 .

[33]  Zhigang Chen,et al.  Visible light photocatalyst: iodine-doped mesoporous titania with a bicrystalline framework. , 2006, The journal of physical chemistry. B.

[34]  Juan Bisquert,et al.  Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[35]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[36]  Alain Goriely,et al.  Morphological Control for High Performance, Solution‐Processed Planar Heterojunction Perovskite Solar Cells , 2014 .

[37]  Zhanhua Wei,et al.  Unveiling Two Electron-Transport Modes in Oxygen-Deficient TiO2 Nanowires and Their Influence on Photoelectrochemical Operation. , 2014, The journal of physical chemistry letters.

[38]  S. Deki,et al.  Titanium (IV) Oxide Thin Films Prepared from Aqueous Solution , 1996 .

[39]  Fujio Izumi,et al.  Raman spectrum of anatase, TiO2 , 1978 .

[40]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[41]  H. Snaith Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells , 2013 .

[42]  O. Toshiaki Temperature Dependence of the Raman Spectrum in Anatase TiO2 , 1980 .

[43]  Yongli He,et al.  Raman scattering study on anatase TiO2 nanocrystals , 2000 .

[44]  L. Etgar,et al.  Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells. , 2014, Physical chemistry chemical physics : PCCP.