Characterization theorems for the Gneiting class of space-time covariances

We characterize the Gneiting class of space–time covariance functions and give more relaxed conditions on the functions involved. We then show necessary conditions for the construction of compactly supported functions of the Gneiting type. These conditions are very general since they do not depend on the Euclidean norm.

[1]  Martin Schlather,et al.  Some covariance models based on normal scale mixtures , 2011 .

[2]  René L. Schilling,et al.  Bernstein Functions: Theory and Applications , 2010 .

[3]  Jorge Mateu,et al.  Quasi-arithmetic means of covariance functions with potential applications to space-time data , 2006, J. Multivar. Anal..

[4]  Jorge Mateu,et al.  The Dagum family of isotropic correlation functions , 2007, 0705.0456.

[5]  Jorge Mateu,et al.  Mixture‐based modeling for space–time data , 2007 .

[6]  Christian Berg,et al.  Stieltjes-Pick-Bernstein-Schoenberg and their connection to complete monotonicity , 2007 .

[7]  Chunsheng Ma Why is isotropy so prevalent in spatial statistics , 2006 .

[8]  A new majorization between functions, polynomials, and operator inequalities , 2006 .

[9]  A. Steerneman,et al.  Spherical distributions: Schoenberg (1938) revisited , 2005 .

[10]  R. Schilling,et al.  Function Spaces as Dirichlet Spaces (About a Paper by Maz'ya and Nagel) , 2005 .

[11]  T. Gneiting,et al.  da taa n ] 1 3 Se p 20 01 Stochastic models which separate fractal dimension and Hurst effect , 2022 .

[12]  T. Gneiting Nonseparable, Stationary Covariance Functions for Space–Time Data , 2002 .

[13]  Tilmann Gneiting,et al.  Criteria of Pólya type for radial positive definite functions , 2001 .

[14]  George Christakos,et al.  Modern Spatiotemporal Geostatistics , 2000 .

[15]  Roger Woodard,et al.  Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.

[16]  Victor P Zastavnyi,et al.  On Positive Definiteness of Some Functions , 2000 .

[17]  N. Cressie,et al.  Classes of nonseparable, spatio-temporal stationary covariance functions , 1999 .

[18]  Monique Pontier,et al.  Drap brownien fractionnaire , 1999 .

[19]  T. Gneiting Isotropic correlation functions on d-dimensional balls , 1999, Advances in Applied Probability.

[20]  J. Chilès,et al.  Geostatistics: Modeling Spatial Uncertainty , 1999 .

[21]  R. Schilling Subordination in the sense of Bochner and a related functional calculus , 1998, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[22]  Niels Jacob,et al.  Pseudo-Differential Operators and Markov Processes , 1996 .

[23]  Hari M. Srivastava,et al.  Summations for basic hypergeometric series involving a q-analogue of the digamma function , 1996 .

[24]  Holger Wendland,et al.  Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..

[25]  C. Berg,et al.  Generation of generators of holomorphic semigroups , 1993, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[26]  A. Koldobsky Schoenberg's Problem on Positive Definite Functions , 1992, math/9210207.

[27]  Yoshihiro Nakamura Classes of Operator Monotone Functions and Stieltjes Functions , 1989 .

[28]  G. Christakos On the Problem of Permissible Covariance and Variogram Models , 1984 .

[29]  A convolution equation relating the generalized Γ-convolutions and the Bondesson Class , 1982 .

[30]  Lennart Bondesson,et al.  Classes of infinitely divisible distributions and densities , 1981 .

[31]  C. Berg The Stieltjes cone is logarithmically convex , 1979 .

[32]  Christian Berg,et al.  Potential Theory on Locally Compact Abelian Groups , 1975 .

[33]  W. Donoghue Monotone Matrix Functions and Analytic Continuation , 1974 .

[34]  G. Matheron The intrinsic random functions and their applications , 1973, Advances in Applied Probability.

[35]  K. Harzallah Sur une démonstration de la formule de Lévy-Kinchine , 1969 .

[36]  Fonctions opérant sur les fonctions définies négatives , 1967 .

[37]  N. Meyers,et al.  H = W. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[38]  T. Teichmann,et al.  Harmonic Analysis and the Theory of Probability , 1957, The Mathematical Gazette.

[39]  E. C. Titchmarsh,et al.  The Laplace Transform , 1991, Heat Transfer 1.

[40]  I. J. Schoenberg,et al.  Metric spaces and positive definite functions , 1938 .

[41]  Autor Desconocido Castellón de la plana , 1900 .