Modeling and docking the endothelin G-protein-coupled receptor.

[1]  K. Palczewski,et al.  Crystal Structure of Rhodopsin: A G‐Protein‐Coupled Receptor , 2002, Chembiochem : a European journal of chemical biology.

[2]  Karl Edman,et al.  High-resolution X-ray structure of an early intermediate in the bacteriorhodopsin photocycle , 1999, Nature.

[3]  H Luecke,et al.  Structure of bacteriorhodopsin at 1.55 A resolution. , 1999, Journal of molecular biology.

[4]  B. Wallace,et al.  Do the structures of big ET-1 and big ET-3 adopt a similar overall fold? Consequences for endothelin converting enzyme specificity. , 1999, Biochemistry.

[5]  M. Dumont,et al.  Assembly of G protein-coupled receptors from fragments: identification of functional receptors with discontinuities in each of the loops connecting transmembrane segments. , 1999, Biochemistry.

[6]  Robert W. Janes,et al.  Tryptophans in Membrane Proteins , 1999 .

[7]  R. W. Janes,et al.  Tryptophans in membrane proteins. X-ray crystallographic analyses. , 1999, Advances in experimental medicine and biology.

[8]  G. Schertler,et al.  Characterisation of an improved two-dimensional p22121 crystal from bovine rhodopsin. , 1998, Journal of molecular biology.

[9]  R. Hubbard,et al.  Combined biophysical and biochemical information confirms arrangement of transmembrane helices visible from the three-dimensional map of frog rhodopsin. , 1998, Journal of molecular biology.

[10]  K. Konvička,et al.  A proposed structure for transmembrane segment 7 of G protein-coupled receptors incorporating an asn-Pro/Asp-Pro motif. , 1998, Biophysical journal.

[11]  J. Baldwin,et al.  An alpha-carbon template for the transmembrane helices in the rhodopsin family of G-protein-coupled receptors. , 1997, Journal of molecular biology.

[12]  M. Sternberg,et al.  Modelling protein docking using shape complementarity, electrostatics and biochemical information. , 1997, Journal of molecular biology.

[13]  Gebhard F. X. Schertler,et al.  Arrangement of rhodopsin transmembrane α-helices , 1997, Nature.

[14]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[15]  A. Lomize,et al.  The transmembrane 7-alpha-bundle of rhodopsin: distance geometry calculations with hydrogen bonding constraints. , 1997, Biophysical journal.

[16]  J. Alderfer,et al.  The first and second cytoplasmic loops of the G-protein receptor, rhodopsin, independently form beta-turns. , 1997, Biochemistry.

[17]  J. Michel,et al.  Conversion of big-endothelin-1 elicits an endothelin ETA receptor-mediated response in endothelial cells. , 1997, European journal of pharmacology.

[18]  J. Baldwin,et al.  Arrangement of rhodopsin transmembrane alpha-helices. , 1997, Nature.

[19]  Andrew J. Martin,et al.  Structural families in loops of homologous proteins: automatic classification, modelling and application to antibodies. , 1996, Journal of molecular biology.

[20]  Øyvind Edvardsen,et al.  A database of mutants and effects of site‐directed mutagenesis experiments on G protein‐coupled receptors , 1996, Proteins.

[21]  B. Gowen,et al.  Projection structure of an invertebrate rhodopsin. , 1996, Journal of structural biology.

[22]  R Henderson,et al.  Electron-crystallographic refinement of the structure of bacteriorhodopsin. , 1996, Journal of molecular biology.

[23]  J. Barrish,et al.  Mutational analysis of the endothelin type A receptor (ETA): interactions and model of selective ETA antagonist BMS-182874 with putative ETA receptor binding cavity. , 1996, Biochemistry.

[24]  M. Billeter,et al.  MOLMOL: a program for display and analysis of macromolecular structures. , 1996, Journal of molecular graphics.

[25]  P. Hargrave,et al.  Projection structure of frog rhodopsin in two crystal forms. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[26]  P Herzyk,et al.  Automated method for modeling seven-helix transmembrane receptors from experimental data. , 1995, Biophysical journal.

[27]  J. Alderfer,et al.  Structure of the third cytoplasmic loop of bovine rhodopsin. , 1995, Biochemistry.

[28]  K. Jacobson,et al.  Modelling the P2Y purinoceptor using rhodopsin as template. , 1995, Drug design and discovery.

[29]  J. Alderfer,et al.  Structure of the carboxy-terminal domain of bovine rhodopsin , 1995, Nature Structural Biology.

[30]  H. Wolfson,et al.  Molecular surface complementarity at protein-protein interfaces: the critical role played by surface normals at well placed, sparse, points in docking. , 1995, Journal of molecular biology.

[31]  C. Broger,et al.  Separable binding sites for the natural agonist endothelin-1 and the non-peptide antagonist bosentan on human endothelin-A receptors. , 1995, European journal of biochemistry.

[32]  G. Schertler,et al.  Low resolution structure of bovine rhodopsin determined by electron cryo-microscopy. , 1995, Biophysical journal.

[33]  E. Liu,et al.  Aspartate mutation distinguishes ETA but not ETB receptor subtype‐selective ligand binding while abolishing phospholipase C activation in both receptors , 1995, FEBS letters.

[34]  R. W. Janes,et al.  A comparison of X‐ray and NMR structures for human endothelin‐1 , 1995, Protein science : a publication of the Protein Society.

[35]  R. W. Janes,et al.  The Crystal Structure of Human Endothelin‐1 and How It Relates to Receptor Binding , 1995, Journal of cardiovascular pharmacology.

[36]  J. Tam,et al.  Alanine scan of endothelin: Importance of aromatic residues , 1994, Peptides.

[37]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[38]  P. Du,et al.  Sequence divergence analysis for the prediction of seven-helix membrane protein structures: II. A 3-D model of human rhodopsin. , 1994, Protein engineering.

[39]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[40]  A. Doherty,et al.  Endothelin receptor antagonists: actions and rationale for their development. , 1994, Biochemical pharmacology.

[41]  Z. Dauter,et al.  Crystallization and structure determination of bovine profilin at 2.0 A resolution. , 1994, Journal of molecular biology.

[42]  L. Firsov,et al.  Refined crystal structures of glucoamylase from Aspergillus awamori var. X100. , 1994, Journal of molecular biology.

[43]  Robert W. Janes,et al.  The crystal structure of human endothelin , 1994, Nature Structural Biology.

[44]  J. Novotný,et al.  Mutation of peptide binding site in transmembrane region of a G protein-coupled receptor accounts for endothelin receptor subtype selectivity. , 1994, The Journal of biological chemistry.

[45]  Ruben Abagyan,et al.  Detailed ab initio prediction of lysozyme–antibody complex with 1.6 Å accuracy , 1994, Nature Structural Biology.

[46]  David T. Jones,et al.  A method for α‐helical integral membrane protein fold prediction , 1994 .

[47]  C. Miyamoto,et al.  Identification of a ligand-binding site of the human endothelin-A receptor and specific regions required for ligand selectivity. , 1994, European journal of biochemistry.

[48]  D. T. Jones,et al.  A method for alpha-helical integral membrane protein fold prediction. , 1994, Proteins.

[49]  T L Blundell,et al.  The evolution and structure of aminergic G protein-coupled receptors. , 1994, Receptors & channels.

[50]  I. Sylte,et al.  Molecular dynamics of the 5-HT1a receptor and ligands. , 1993, Protein engineering.

[51]  A. Agarwal,et al.  Sequence homology between bacteriorhodopsin and G‐protein coupled receptors: exon shuffling or evolution by duplication? , 1993, FEBS letters.

[52]  T L Blundell,et al.  An evaluation of the performance of an automated procedure for comparative modelling of protein tertiary structure. , 1993, Protein engineering.

[53]  K. Nakao,et al.  Distinct subdomains of human endothelin receptors determine their selectivity to endothelinA-selective antagonist and endothelinB-selective agonists. , 1993, The Journal of biological chemistry.

[54]  Gebhard F. X. Schertler,et al.  Projection structure of rhodopsin , 1993, Nature.

[55]  Y. Yamamoto,et al.  Modeling of human thromboxane A2 receptor and analysis of the receptor-ligand interaction. , 1993, Journal of medicinal chemistry.

[56]  H Weinstein,et al.  Signal transduction by a 5-HT2 receptor: a mechanistic hypothesis from molecular dynamics simulations of the three-dimensional model of the receptor complexed to ligands. , 1993, Journal of medicinal chemistry.

[57]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[58]  J. Baldwin The probable arrangement of the helices in G protein‐coupled receptors. , 1993, The EMBO journal.

[59]  C. Strader,et al.  Amino–aromatic interaction between histidine 197 of the neurokinin-1 receptor and CP 96345 , 1993, Nature.

[60]  C. Sander,et al.  Quality control of protein models : directional atomic contact analysis , 1993 .

[61]  T K Attwood,et al.  Design of a discriminating fingerprint for G-protein-coupled receptors. , 1993, Protein engineering.

[62]  John P. Overington,et al.  Modeling α‐helical transmembrane domains: The calculation and use of substitution tables for lipid‐facing residues , 1993, Protein science : a publication of the Protein Society.

[63]  Kay Hofmann,et al.  Tmbase-A database of membrane spanning protein segments , 1993 .

[64]  G Vriend,et al.  Modeling of transmembrane seven helix bundles. , 1993, Protein engineering.

[65]  R. Miller,et al.  The structure and specificity of endothelin receptors: their importance in physiology and medicine. , 1993, Pharmacology & therapeutics.

[66]  X. Lewell A model of the adrenergic beta-2 receptor and binding sites for agonist and antagonist. , 1993, Drug design and discovery.

[67]  S. Henikoff,et al.  Amino acid substitution matrices from protein blocks. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[68]  M J Sternberg,et al.  New algorithm to model protein-protein recognition based on surface complementarity. Applications to antibody-antigen docking. , 1992, Journal of molecular biology.

[69]  L. Pardo,et al.  On the use of the transmembrane domain of bacteriorhodopsin as a template for modeling the three-dimensional structure of guanine nucleotide-binding regulatory protein-coupled receptors. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[70]  D. Bassolino,et al.  Conformational isomerism of endothelin in acidic aqueous media: a quantitative NOESY analysis. , 1992, Biochemistry.

[71]  M Wilmanns,et al.  Three-dimensional structure of the bifunctional enzyme phosphoribosylanthranilate isomerase: indoleglycerolphosphate synthase from Escherichia coli refined at 2.0 A resolution. , 1992, Journal of molecular biology.

[72]  K. Jacobson,et al.  Molecular modeling of adenosine receptors. I. The ligand binding site on the A1 receptor. , 1992, Drug design and discovery.

[73]  J. Janin,et al.  Protein‐protein recognition analyzed by docking simulation , 1991, Proteins.

[74]  Axel Wollmer,et al.  A model for the C5a receptor and for its interaction with the ligand [corrected]. , 1991 .

[75]  I. Sylte,et al.  Molecular dynamics of dopamine at the D2 receptor. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[76]  The conformation of endothelin-1 in aqueous solution: NMR-derived constraints combined with distance geometry and molecular dynamics calculations. , 1991, Biochemical and biophysical research communications.

[77]  J Hoflack,et al.  Three-dimensional models of neurotransmitter G-binding protein-coupled receptors. , 1991, Molecular pharmacology.

[78]  T. Fukui,et al.  Plasma Immunoreactive Endothelin‐1 in Experimental Malignant Hypertension , 1991, Hypertension.

[79]  Y. Kyōgoku,et al.  Solution conformation of endothelin determined by means of 1H-NMR spectroscopy and distance geometry calculations. , 1991, Protein engineering.

[80]  Conformation of endothelin in aqueous ethylene glycol determined by 1H‐NMR and molecular dynamics simulations , 1991, FEBS letters.

[81]  M. Yanagisawa,et al.  Increased plasma level of endothelin-1 and coronary spasm induction in patients with vasospastic angina pectoris. , 1991, Circulation.

[82]  Solution conformation of endothelin, a potent vaso‐constricting bicyclic peptide A combined use1H NMR spectroscopy and distance geometry calculations , 1991, FEBS letters.

[83]  E. Eliopoulos,et al.  Three-dimensional modelling of G protein-linked receptors. , 1990, Trends in pharmacological sciences.

[84]  Richard Henderson,et al.  A model for the structure of bacteriorhodopsin based on high resolution electron cryomicroscopy , 1990 .

[85]  R. Henderson,et al.  Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. , 1990, Journal of molecular biology.

[86]  H. Matsumoto,et al.  Pathophysiological role of endothelin in acute renal failure. , 1990, Life sciences.

[87]  V. Saudek,et al.  1H‐NMR study of endothelin, sequence‐specific assignment of the spectrum and a solution structure , 1989, FEBS letters.

[88]  C. Kitada,et al.  Solution conformation of endothelin determined by nuclear magnetic resonance and distance geometry , 1989, FEBS letters.

[89]  J Deisenhofer,et al.  Nobel lecture. The photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis. , 1989, The EMBO journal.

[90]  C. Cambillau,et al.  Crystallization and preliminary X-ray study of horse pancreatic lipase. , 1989, Journal of molecular biology.

[91]  S. Wodak,et al.  Modelling the polypeptide backbone with 'spare parts' from known protein structures. , 1989, Protein engineering.

[92]  M. Yanagisawa,et al.  Conversion of Big Endothelin‐1 to 21‐Residue Endothelin‐1 Is Essential for Expression of Full Vasoconstrictor Activity: Structure‐Activity Relationships of Big Endothelin‐1 , 1989, Journal of cardiovascular pharmacology.

[93]  Sadao Kimura,et al.  A novel potent vasoconstrictor peptide produced by vascular endothelial cells , 1988, Nature.

[94]  J L Benovic,et al.  The multiple membrane spanning topography of the beta 2-adrenergic receptor. Localization of the sites of binding, glycosylation, and regulatory phosphorylation by limited proteolysis. , 1987, The Journal of biological chemistry.

[95]  B. Wallace,et al.  Differential absorption flattening optical effects are significant in the circular dichroism spectra of large membrane fragments. , 1987, Biochemistry.

[96]  T. A. Jones,et al.  Using known substructures in protein model building and crystallography. , 1986, The EMBO journal.

[97]  P. Kollman,et al.  An all atom force field for simulations of proteins and nucleic acids , 1986, Journal of computational chemistry.

[98]  U. Singh,et al.  A NEW FORCE FIELD FOR MOLECULAR MECHANICAL SIMULATION OF NUCLEIC ACIDS AND PROTEINS , 1984 .