Distinguishing decoherence from alternative quantum theories by dynamical decoupling

A long-standing challenge in the foundations of quantum mechanics is the verification of alternative collapse theories despite their mathematical similarity to decoherence. To this end, we suggest a method based on dynamical decoupling. Experimental observation of nonzero saturation of the decoupling error in the limit of fast-decoupling operations can provide evidence for alternative quantum theories. The low decay rates predicted by collapse models are challenging, but high-fidelity measurements as well as recent advances in decoupling schemes for qubits let us explore a similar parameter regime to experiments based on macroscopic superpositions. As part of the analysis we prove that unbounded Hamiltonians can be perfectly decoupled. We demonstrate this on a dilation of a Lindbladian to a fully Hamiltonian model that induces exponential decay.

[1]  Lorenza Viola,et al.  Dynamical control of qubit coherence: Random versus deterministic schemes (20 pages) , 2005 .

[2]  Angelo Bassi,et al.  Is Quantum Theory Exact? , 2009, Science.

[3]  Maximilian Schlosshauer-Selbach Decoherence and the quantum-to-classical transition , 2008 .

[4]  Xing Rong,et al.  Preserving electron spin coherence in solids by optimal dynamical decoupling , 2009, Nature.

[5]  G. Uhrig,et al.  Optimized dynamical decoupling for power-law noise spectra , 2009, 0909.3439.

[6]  M. Reed Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .

[7]  E. Knill,et al.  DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.

[8]  Michael J. Biercuk,et al.  Optimized dynamical decoupling in a model quantum memory , 2008, Nature.

[9]  A. G. White,et al.  Ancilla-assisted quantum process tomography. , 2003, Physical review letters.

[10]  Diósi,et al.  Models for universal reduction of macroscopic quantum fluctuations. , 1989, Physical review. A, General physics.

[11]  R Hanson,et al.  Universal Dynamical Decoupling of a Single Solid-State Spin from a Spin Bath , 2010, Science.

[12]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[13]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[14]  University of Maryland,et al.  Dynamical Decoupling Using Slow Pulses: Efficient Suppression of 1/f Noise , 2002, quant-ph/0211081.

[15]  Huzihiro Araki,et al.  Reviews in mathematical physics , 1989 .

[16]  Manjin Zhong,et al.  Optically addressable nuclear spins in a solid with a six-hour coherence time , 2015, Nature.

[17]  D. Vitali,et al.  Using parity kicks for decoherence control , 1998, quant-ph/9808055.

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  Stephen L. Adler,et al.  Quantum Theory as an Emergent Phenomenon: Introduction and overview , 2004 .

[20]  K. Hornberger,et al.  Macroscopicity of mechanical quantum superposition states. , 2012, Physical review letters.

[21]  K. Hammerer,et al.  Optomechanical sensing of spontaneous wave-function collapse. , 2014, Physical review letters.

[22]  Henry O. Everitt,et al.  Experimental Aspects of Quantum Computing , 2005 .

[23]  Anna Keselman,et al.  High-fidelity state detection and tomography of a single-ion Zeeman qubit , 2011, 1103.5253.

[24]  D. Burgarth,et al.  A continuous-time diffusion limit theorem for dynamical decoupling and intrinsic decoherence , 2014, 1405.7666.

[25]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[26]  P. Exner Open Quantum Systems And Feynman Integrals , 1984 .

[27]  D. D. Awschalom,et al.  Decoherence-protected quantum gates for a hybrid solid-state spin register , 2012, Nature.

[28]  Wen Yang,et al.  Universality of Uhrig dynamical decoupling for suppressing qubit pure dephasing and relaxation. , 2008, Physical review letters.

[29]  James Bateman,et al.  Near-field interferometry of a free-falling nanoparticle from a point-like source , 2013, Nature Communications.

[30]  Lorenza Viola,et al.  Random decoupling schemes for quantum dynamical control and error suppression. , 2005, Physical review letters.

[31]  A. Bassi,et al.  Collapse models: from theoretical foundations to experimental verifications , 2014, 1401.6314.

[32]  M. Paternostro,et al.  Proposal for a noninterferometric test of collapse models in optomechanical systems , 2014, 1402.5421.

[33]  Milburn,et al.  Intrinsic decoherence in quantum mechanics. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[34]  D. Dürr,et al.  Uniqueness of the equation for quantum state vector collapse. , 2013, Physical review letters.

[35]  P. Hānggi,et al.  On the conundrum of deriving exact solutions from approximate master equations , 2007, 0707.3938.

[36]  G. Uhrig Keeping a quantum bit alive by optimized pi-pulse sequences. , 2006, Physical review letters.

[37]  Robert B. Griffiths,et al.  Quantum Error Correction , 2011 .

[38]  W. Strunz,et al.  Decoherence and the nature of system-environment correlations , 2011, 1109.0147.

[39]  Angelo Bassi,et al.  Models of Wave-function Collapse, Underlying Theories, and Experimental Tests , 2012, 1204.4325.

[40]  Thomas G. Kurtz,et al.  A random Trotter product formula , 1972 .

[41]  M. Schlosshauer Decoherence, the measurement problem, and interpretations of quantum mechanics , 2003, quant-ph/0312059.

[42]  Effects of stochastic noise on dynamical decoupling procedures , 2014, 1405.1852.

[43]  Daniel A. Lidar,et al.  Optimally combining dynamical decoupling and quantum error correction , 2012, Scientific Reports.

[44]  Nicolaas P. Landsman Decoherence and the quantum-to-classical transition , 2009 .

[45]  Paul R. Chernoff,et al.  Note on product formulas for operator semigroups , 1968 .