BrainGazer - Visual Queries for Neurobiology Research

Neurobiology investigates how anatomical and physiological relationships in the nervous system mediate behavior. Molecular genetic techniques, applied to species such as the common fruit fly Drosophila melanogaster, have proven to be an important tool in this research. Large databases of transgenic specimens are being built and need to be analyzed to establish models of neural information processing. In this paper we present an approach for the exploration and analysis of neural circuits based on such a database. We have designed and implemented \emph{BrainGazer}, a system which integrates visualization techniques for volume data acquired through confocal microscopy as well as annotated anatomical structures with an intuitive approach for accessing the available information. We focus on the ability to visually query the data based on semantic as well as spatial relationships. Additionally, we present visualization techniques for the concurrent depiction of neurobiological volume data and geometric objects which aim to reduce visual clutter. The described system is the result of an ongoing interdisciplinary collaboration between neurobiologists and visualization researchers.

[1]  Oliver Deussen,et al.  Image enhancement by unsharp masking the depth buffer , 2006, SIGGRAPH 2006.

[2]  Bernhard Preim,et al.  Visualization of vasculature with convolution surfaces: method, validation and evaluation , 2005, IEEE Transactions on Medical Imaging.

[3]  Arie E. Kaufman,et al.  Visualizing nerve cells , 1994, IEEE Computer Graphics and Applications.

[4]  Jan G. Bjaalie,et al.  Localization in the brain: new solutions emerging , 2002, Nature Reviews Neuroscience.

[5]  Nelson L. Max Computer rendering of lobster neurons , 1976, SIGGRAPH '76.

[6]  Christopher Williamson,et al.  Dynamic queries for information exploration: an implementation and evaluation , 1992, CHI.

[7]  Daniel A. Keim,et al.  Information Visualization and Visual Data Mining , 2002, IEEE Trans. Vis. Comput. Graph..

[8]  Robert van Liere,et al.  Visualization and Analysis of Large Data Collections: a Case Study Applied to Confocal Microscopy Data , 2006, IEEE Transactions on Visualization and Computer Graphics.

[9]  Rolf Kötter,et al.  Matching Spatial with Ontological Brain Regions using Java Tools for Visualization, Database Access, and Integrated Data Analysis , 2009, Neuroinformatics.

[10]  Volker Hartenstein,et al.  Neural Lineages of the Drosophila Brain: A Three-Dimensional Digital Atlas of the Pattern of Lineage Location and Projection at the Late Larval Stage , 2006, The Journal of Neuroscience.

[11]  Jesper Fredriksson,et al.  Design of an Internet accessible visual human brain database system , 1999, Proceedings IEEE International Conference on Multimedia Computing and Systems.

[12]  Eduard Gröller,et al.  The VesselGlyph: focus & context visualization in CT-angiography , 2004, IEEE Visualization 2004.

[13]  Georgios Sakas,et al.  Visualization of Laser Confocal Microscopy Datasets , 1996, IEEE Visualization.

[14]  A Maye,et al.  VISUALIZATION, RECONSTRUCTION, AND INTEGRATION OF NEURONAL STRUCTURES IN DIGITAL BRAIN ATLASES , 2006, The International journal of neuroscience.

[15]  Torsten Rohlfing,et al.  Nonrigid image registration in shared-memory multiprocessor environments with application to brains, breasts, and bees , 2003, IEEE Transactions on Information Technology in Biomedicine.

[16]  Arnim Jenett,et al.  The Virtual Insect Brain protocol: creating and comparing standardized neuroanatomy , 2006, BMC Bioinformatics.

[17]  Joe Michael Kniss,et al.  Gaussian transfer functions for multi-field volume visualization , 2003, IEEE Visualization, 2003. VIS 2003..

[18]  Stefan Bruckner,et al.  Instant Volume Visualization using Maximum Intensity Difference Accumulation , 2009, Comput. Graph. Forum.

[19]  Matthew O. Ward,et al.  High Dimensional Brushing for Interactive Exploration of Multivariate Data , 1995, Proceedings Visualization '95.

[20]  P. de Heras Ciechomski,et al.  Two-Phased Real-Time Rendering of Large Neuron Databases , 2008, 2008 International Conference on Innovations in Information Technology.

[21]  Oliver Günther,et al.  Multidimensional access methods , 1998, CSUR.

[22]  Marina Chicurel,et al.  Databasing the brain , 2000, Nature.

[23]  Michael Scholz,et al.  New methods for the computer-assisted 3-D reconstruction of neurons from confocal image stacks , 2004, NeuroImage.

[24]  Brian A. Wandell,et al.  Exploring connectivity of the brain's white matter with dynamic queries , 2005, IEEE Transactions on Visualization and Computer Graphics.

[25]  Jonathan Nissanov,et al.  The Neuroterrain 3D Mouse Brain Atlas , 2008, Frontiers Neuroinformatics.

[26]  Lydia Ng,et al.  Exploration and visualization of gene expression with neuroanatomy in the adult mouse brain , 2008, BMC Bioinformatics.

[27]  Arie E. Kaufman,et al.  Volume visualization in cell biology , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[28]  Ya-Yun Wang,et al.  Databasing the Brain: From Data to Knowledge (Neuroinformatics), S.H. Koslow, S. Subramaniam (Eds.). Wiley-Liss/John Wiley & Sons (2005), 523 pp., Price: £79.99, ISBN: 0-471-30921-4 , 2010 .

[29]  William J. Gilbert,et al.  A cube-filling Hilbert Curve , 1984 .

[30]  Hans-Christian Hege,et al.  Ontology-Based Visualization of Hierarchical Neuroanatomical Structures , 2008, VCBM.

[31]  Eduard Gröller,et al.  Two-Level Volume Rendering , 2001, IEEE Trans. Vis. Comput. Graph..

[32]  H. V. Jagadzsh Linear Clustering of Objects with Multiple Attributes , 1998 .

[33]  D C Van Essen,et al.  A graphical anatomical database of neural connectivity. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[34]  Cem Yuksel,et al.  Visualization of Fibrous and Thread-like Data , 2006, IEEE Transactions on Visualization and Computer Graphics.

[35]  Georgios Sakas,et al.  Data Intermixing and Multi‐volume Rendering , 1999, Comput. Graph. Forum.

[36]  N. Perrimon,et al.  Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. , 1993, Development.

[37]  Steven F. Roth,et al.  An interactive visual query environment for exploring data , 1997, UIST '97.

[38]  Ryan Hafen,et al.  Understanding syndromic hotspots - a visual analytics approach , 2008, 2008 IEEE Symposium on Visual Analytics Science and Technology.

[39]  Larry W. Swanson,et al.  The NeuARt II system: a viewing tool for neuroanatomical data based on published neuroanatomical atlases , 2006, BMC Bioinformatics.

[40]  Shawn R. Olsen,et al.  Cracking neural circuits in a tiny brain: new approaches for understanding the neural circuitry of Drosophila , 2008, Trends in Neurosciences.

[41]  David C. Reutens,et al.  Wired for Sex: The Neurobiology of Drosophila Mating Decisions , 2008 .