Vision-based feedback strategy for controlled pushing of microparticles

A strategy for controlled pushing is presented for microassembly of 4.5μm polystyrene particles on a flat glass substrate using an atomic force microscope probe tip. Real-time vision based feedback from a CCD camera mounted to a high resolution optical microscope is used to track particle positions relative to the tip and target position. Tip–particle system is modeled in 2D as a non-holonomic differential drive robot. Effectiveness of the controller is demonstrated through experiments performed using a single goal position as well as linking a series of target positions to form a single complex trajectory. Cell decomposition and wavefront expansion algorithms are implemented to autonomously locate a navigable path to a specified target position. Control strategy alleviates problem of slipping and spinning during pushing.

[1]  M. Sitti,et al.  Two-dimensional vision-based autonomous microparticle manipulation using a nanoprobe , 2006 .

[2]  M. Sitti,et al.  Dynamic modes of nanoparticle motion during nanoprobe-based manipulation , 2004, 4th IEEE Conference on Nanotechnology, 2004..

[3]  Alessandro Astolfi,et al.  Exponential Stabilization of a Wheeled Mobile Robot Via Discontinuous Control , 1999 .

[4]  John F. Canny,et al.  Planning smooth paths for mobile robots , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[5]  Karim Faez,et al.  Fast Circle Detection Using Gradient Pair Vectors , 2003, DICTA.

[6]  Nicholas G. Dagalakis,et al.  Probe-Based Micro-Scale Manipulation and Assembly Using Force Feedback | NIST , 2006 .

[7]  Aristides A. G. Requicha,et al.  Automatic planning of nanoparticle assembly tasks , 2001, Proceedings of the 2001 IEEE International Symposium on Assembly and Task Planning (ISATP2001). Assembly and Disassembly in the Twenty-first Century. (Cat. No.01TH8560).

[8]  P. Dario,et al.  From "macro" to "micro" manipulation: models and experiments , 2004, IEEE/ASME Transactions on Mechatronics.

[9]  Kenneth Y. Goldberg,et al.  Parallel microassembly with electrostatic force fields , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[10]  Aristides A. G. Requicha,et al.  Layered nanoassembly of three-dimensional structures , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[11]  Mehdi Ammi,et al.  Path planning of an AFM-based nanomanipulator using virtual force reflection , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[12]  F. Caparrelli,et al.  A versatile vision system for micromanipulation tasks , 2001, Conference Documentation International Conference on Multisensor Fusion and Integration for Intelligent Systems. MFI 2001 (Cat. No.01TH8590).

[13]  B. Bhushan,et al.  Introduction to Tribology , 2002 .

[14]  Roland Siegwart,et al.  Introduction to Autonomous Mobile Robots , 2004 .

[15]  Aristides A. G. Requicha,et al.  Direct and controlled manipulation of nanometer-sized particles using the non-contact atomic force microscope , 1998 .

[16]  M. Esashi,et al.  Si multiprobes integrated with lateral actuators for independent scanning probe applications , 2005 .

[17]  Michel Verhaegen,et al.  Proceedings of the 3rd European Control Conference , 1995 .

[18]  Metin Sitti,et al.  Manufacturing of two and three-dimensional micro/nanostructures by integrating optical tweezers with chemical assembly , 2005, Robotica.

[19]  J. Bohr,et al.  A technique for positioning nanoparticles using an atomic force microscope , 1998 .

[20]  Lixin Dong,et al.  Dielectrophoretic micro/nanoassembly with microtweezers and nanoelectrodes , 2005, ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005..

[21]  M. Sitti,et al.  Atomic force microscope based two-dimensional assembly of micro/nanoparticles , 2005, (ISATP 2005). The 6th IEEE International Symposium on Assembly and Task Planning: From Nano to Macro Assembly and Manufacturing, 2005..

[22]  P. Burke,et al.  Towards single molecule manipulation with dielectrophoresis using nanoelectrodes , 2003, 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003..

[23]  H. Hashimoto,et al.  Controlled pushing of nanoparticles: modeling and experiments , 2000 .

[24]  Cagdas D. Onal,et al.  Visual Servoing-Based Autonomous 2-D Manipulation of Microparticles Using a Nanoprobe , 2007, IEEE Transactions on Control Systems Technology.

[25]  Myung Hwangbo,et al.  A stable target-tracking control for unicycle mobile robots , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[26]  Metin Sitti,et al.  Rolling and Spinning Friction Characterization of Fine Particles Using Lateral Force Microscopy Based Contact Pushing , 2008 .