High-Level Information Fusion in Visual Sensor Networks

Information fusion techniques combine data from multiple sensors, along with additional information and knowledge, to obtain better estimates of the observed scenario than could be achieved by the use of single sensors or information sources alone. According to the JDL fusion process model, high-level information fusion is concerned with the computation of a scene representation in terms of abstract entities such as activities and threats, as well as estimating the relationships among these entities. Recent experiences confirm that context knowledge plays a key role in the new-generation high-level fusion systems, especially in those involving complex scenarios that cause the failure of classical statistical techniques –as it happens in visual sensor networks. In this chapter, we study the architectural and functional issues of applying context information to improve high-level fusion procedures, with a particular focus on visual data applications. The use of formal knowledge representations (e.g. ontologies) is a promising advance in this direction, but there are still some unresolved questions that must be more extensively researched.

[1]  Miguel A. Patricio,et al.  Context-Based Reasoning Using Ontologies to Adapt Visual Tracking in Surveillance , 2009, 2009 Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance.

[2]  Mieczyslaw M. Kokar,et al.  Ontology-based situation awareness , 2009, Inf. Fusion.

[3]  Roger Y. Tsai,et al.  A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses , 1987, IEEE J. Robotics Autom..

[4]  Andreas Zimmermann,et al.  An Operational Definition of Context , 2007, CONTEXT.

[5]  T. Fukuda,et al.  Scanning the issue/technology , 1999, Proc. IEEE.

[6]  Simon J. Julier,et al.  Estimating and exploiting the degree of independent information in distributed data fusion , 2009, 2009 12th International Conference on Information Fusion.

[7]  Jadwiga Indulska,et al.  A software engineering framework for context-aware pervasive computing , 2004, Second IEEE Annual Conference on Pervasive Computing and Communications, 2004. Proceedings of the.

[8]  Ramakant Nevatia,et al.  Video-based event recognition: activity representation and probabilistic recognition methods , 2004, Comput. Vis. Image Underst..

[9]  Subrata Das High-Level Data Fusion , 2008 .

[10]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[11]  Tieniu Tan,et al.  Learning activity patterns using fuzzy self-organizing neural network , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[12]  Jeffrey K. Uhlmann,et al.  General Decentralized Data Fusion With Covariance Intersection (CI) , 2001 .

[13]  Robin R. Murphy,et al.  Sensor fusion , 1998 .

[14]  Pablo O. Arambel Structured pedigree information for distributed fusion systems , 2008, SPIE Defense + Commercial Sensing.

[15]  Yaakov Bar-Shalom,et al.  Multitarget-multisensor tracking: Advanced applications , 1989 .

[16]  Anind K. Dey,et al.  Understanding and Using Context , 2001, Personal and Ubiquitous Computing.

[17]  Thomas R. Gruber,et al.  A translation approach to portable ontology specifications , 1993, Knowl. Acquis..

[18]  Karen Henricksen,et al.  A framework for context-aware pervasive computing applications , 2003 .

[19]  Miguel A. Patricio,et al.  Computational Intelligence in Visual Sensor Networks: Improving Video Processing Systems , 2008 .

[20]  Yuqing Wan,et al.  A Unified Out-of-Sequence Measurements Fusion Algorithm for WSN , 2009, 2009 First International Workshop on Database Technology and Applications.

[21]  Tieniu Tan,et al.  Recent developments in human motion analysis , 2003, Pattern Recognit..

[22]  Zhengyou Zhang,et al.  A Flexible New Technique for Camera Calibration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Ian Lewis,et al.  Proceedings of the SPIE , 2012 .

[24]  Miguel A. Patricio,et al.  Ontological representation of context knowledge for visual data fusion , 2009, 2009 12th International Conference on Information Fusion.

[25]  Felix Naumann,et al.  Data fusion , 2009, CSUR.

[26]  Massimo Piccardi,et al.  Background subtraction techniques: a review , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[27]  Reza Olfati-Saber,et al.  Distributed Kalman filtering for sensor networks , 2007, 2007 46th IEEE Conference on Decision and Control.

[28]  Miguel A. Patricio,et al.  Data fusion to improve trajectory tracking in a Cooperative Surveillance Multi-Agent Architecture , 2010, Inf. Fusion.

[29]  Jeffrey E. Brower Relations without polyadic properties: Albert the great on the nature and ontological status of relations , 2001 .

[30]  Ulrike Sattler,et al.  A Case for Abductive Reasoning over Ontologies , 2006, OWLED.

[31]  Miguel A. Patricio,et al.  Designing a Visual Sensor Network Using a Multi-agent Architecture , 2009, PAAMS.

[32]  Mieczyslaw M. Kokar,et al.  Using ontologies for recognition: an example , 2002, Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997).

[33]  C. Nowak On ontologies for high-level information fusion , 2003, Sixth International Conference of Information Fusion, 2003. Proceedings of the.

[34]  Magdy A. Bayoumi,et al.  A network of sensor-based framework for automated visual surveillance , 2007, J. Netw. Comput. Appl..

[35]  Ramakant Nevatia,et al.  VERL: An Ontology Framework for Representing and Annotating Video Events , 2005, IEEE Multim..

[36]  James Llinas,et al.  An introduction to multisensor data fusion , 1997, Proc. IEEE.

[37]  Gian Luca Foresti,et al.  Domain knowledge for surveillance applications , 2007, 2007 10th International Conference on Information Fusion.

[38]  Hamid R. Ekbia,et al.  Context and Relevance: A Pragmatic Approach , 2001, CONTEXT.

[39]  Bernd Neumann,et al.  On scene interpretation with description logics , 2006, Image Vis. Comput..

[40]  Volker Haarslev,et al.  Description of the RACER System and its Applications , 2001, Description Logics.

[41]  Sergio A. Velastin,et al.  Intelligent distributed surveillance systems: a review , 2005 .

[42]  Chee-Yee Chong,et al.  Joint Probabilistic Data Association in Distributed Sensor Networks , 1985, 1985 American Control Conference.

[43]  Hironobu Fujiyoshi,et al.  Moving target classification and tracking from real-time video , 1998, Proceedings Fourth IEEE Workshop on Applications of Computer Vision. WACV'98 (Cat. No.98EX201).

[44]  Ramesh Jain,et al.  Toward a Common Event Model for Multimedia Applications , 2007, IEEE MultiMedia.

[45]  Deborah L. McGuinness,et al.  OWL Web ontology language overview , 2004 .

[46]  Steffen Staab,et al.  COMM: Designing a Well-Founded Multimedia Ontology for the Web , 2007, ISWC/ASWC.