Optimal regression rates for SVMs using Gaussian kernels
暂无分享,去创建一个
[1] N. Aronszajn. Theory of Reproducing Kernels. , 1950 .
[2] J. Cooper. SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .
[3] H. Johnen,et al. On the equivalence of the K-functional and moduli of continuity and some applications , 1976, Constructive Theory of Functions of Several Variables.
[4] R. DeVore,et al. Quantitative Korovkin theorems for positive linear operators on _{}-spaces , 1978 .
[5] H. Triebel. Theory Of Function Spaces , 1983 .
[6] R. DeVore,et al. Interpolation of Besov-Spaces , 1988 .
[7] B. Carl,et al. Entropy, Compactness and the Approximation of Operators , 1990 .
[8] P. Chaudhuri. Global nonparametric estimation of conditional quantile functions and their derivatives , 1991 .
[9] George G. Lorentz,et al. Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.
[10] A. Magnus. Constructive Approximation, Grundlehren der mathematischen Wissenschaften, Vol. 303, R. A. DeVore and G. G. Lorentz, Springer-Verlag, 1993, x + 449 pp. , 1994 .
[11] H. Triebel,et al. Function Spaces, Entropy Numbers, Differential Operators: Function Spaces , 1996 .
[12] Xiaotong Shen. ON THE METHOD OF PENALIZATION , 1998 .
[13] Alexander J. Smola,et al. Learning with kernels , 1998 .
[14] Felipe Cucker,et al. On the mathematical foundations of learning , 2001 .
[15] Adam Krzyzak,et al. A Distribution-Free Theory of Nonparametric Regression , 2002, Springer series in statistics.
[16] Dustin Boswell,et al. Introduction to Support Vector Machines , 2002 .
[17] So K Kb. EFFICIENT SEMIPARAMETRIC ESTIMATION OF A PARTIALLY LINEAR QUANTILE REGRESSION MODEL , 2003 .
[18] S. Smale,et al. ESTIMATING THE APPROXIMATION ERROR IN LEARNING THEORY , 2003 .
[19] S. Keerthi,et al. SMO Algorithm for Least-Squares SVM Formulations , 2003, Neural Computation.
[20] Yiming Ying,et al. Support Vector Machine Soft Margin Classifiers: Error Analysis , 2004, J. Mach. Learn. Res..
[21] A. Berlinet,et al. Reproducing kernel Hilbert spaces in probability and statistics , 2004 .
[22] Lorenzo Rosasco,et al. Model Selection for Regularized Least-Squares Algorithm in Learning Theory , 2005, Found. Comput. Math..
[23] Alexander J. Smola,et al. Nonparametric Quantile Estimation , 2006, J. Mach. Learn. Res..
[24] Yiming Ying,et al. Learning Rates of Least-Square Regularized Regression , 2006, Found. Comput. Math..
[25] Vladimir Temlyakov,et al. Optimal estimators in learning theory , 2006 .
[26] Yiming Ying,et al. Learnability of Gaussians with Flexible Variances , 2007, J. Mach. Learn. Res..
[27] Ji Zhu,et al. Quantile Regression in Reproducing Kernel Hilbert Spaces , 2007 .
[28] Ingo Steinwart,et al. Fast rates for support vector machines using Gaussian kernels , 2007, 0708.1838.
[29] A. Caponnetto,et al. Optimal Rates for the Regularized Least-Squares Algorithm , 2007, Found. Comput. Math..
[30] Andreas Christmann,et al. How SVMs can estimate quantiles and the median , 2007, NIPS.
[31] S. Smale,et al. Learning Theory Estimates via Integral Operators and Their Approximations , 2007 .
[32] F. Vega-Redondo. Complex Social Networks: Econometric Society Monographs , 2007 .
[33] Andreas Christmann,et al. Support vector machines , 2008, Data Mining and Knowledge Discovery Handbook.
[34] H. Triebel. Theory of Function Spaces III , 2008 .
[35] Ding-Xuan Zhou,et al. Learning and approximation by Gaussians on Riemannian manifolds , 2009, Adv. Comput. Math..
[36] Don R. Hush,et al. Optimal Rates for Regularized Least Squares Regression , 2009, COLT.
[37] C. Campbell,et al. Generalization bounds for learning the kernel , 2009 .
[38] Dao-Hong Xiang,et al. Classification with Gaussians and Convex Loss , 2009, J. Mach. Learn. Res..
[39] S. Mendelson,et al. Regularization in kernel learning , 2010, 1001.2094.
[40] Taiji Suzuki,et al. Unifying Framework for Fast Learning Rate of Non-Sparse Multiple Kernel Learning , 2011, NIPS.
[41] Ingo Steinwart,et al. Optimal learning rates for least squares SVMs using Gaussian kernels , 2011, NIPS.
[42] Ingo Steinwart,et al. Estimating conditional quantiles with the help of the pinball loss , 2011, 1102.2101.
[43] G. Burton. Sobolev Spaces , 2013 .