Low-loss polymeric materials for passive waveguide components in fiber optical telecommunication

With fiber optical telecommunication systems penetrating into metropolitan and access networks, planar waveguide technology is increasingly being considered a solution to the bottleneck of cost-effective manufacture of passive components. Being recognized for their high thermo-optical coefficients, ease of fabrication, cost-effectiveness, and compatibility with other materials, polymers as a platform technology for waveguide devices are gaining more and more commercial acceptance. Fully exploiting the potentials of the polymeric materials demands comprehensive understanding of both the specific device applications and various polymer systems. The right choice of materials is often the key to the success of component development. Unfortunately, since extensive study of polymeric materials and devices operating at 1.55 mm began just recently, few ideal materials have so far been made commercially available. From the polymer chemistry point of view, it is possible to tailor the materials to meet specific and strict requirements for optical waveguide devices. This is a review of the most promising fluorinated polymers and silicone resins and their demonstrated device applications. The paper is designed to provide a guide to both polymer scientists who want to develop novel high-performance materials for waveguide applications, and optical engineers who need to gain insight into the materials.

[1]  Y. Koike,et al.  Fabrication and properties of polymer optical fibers containing Nd-chelate , 2000, IEEE Photonics Technology Letters.

[2]  A. A. Goodwin,et al.  Synthesis and characterization of fluorinated polyetherketones prepared from decafluorobenzophenone , 1997 .

[3]  H. Nounen,et al.  Athermal and center wavelength adjustable arrayed-waveguide grating , 2000, Optical Fiber Communication Conference. Technical Digest Postconference Edition. Trends in Optics and Photonics Vol.37 (IEEE Cat. No. 00CH37079).

[4]  Larry R. Dalton,et al.  Electro-optic polymer modulators with 0.8 V half-wave voltage , 2000 .

[5]  Soon-Ki Kwon,et al.  Fluorinated poly(arylene ether sulfide) for polymeric optical waveguide devices , 2001 .

[6]  Yong Hyub Won,et al.  PLC-type variable optical attenuator operated at low electrical power , 2000 .

[7]  J. M. Farley,et al.  POLYMERS DERIVED FROM HEXAFLUOROACETONE , 1989 .

[8]  Bernard Boutevin,et al.  New halogenated monomers and polymers for low loss plastic optical fiber , 1994 .

[9]  M. C. J. M. Donckers,et al.  Solid state optical space switches for network cross-connect and protection applications , 1997, IEEE Commun. Mag..

[10]  Wolfgang Ehrfeld,et al.  Polymer waveguide devices with passive pigtailing : an application of LIGA technology , 2000 .

[11]  A. Snow,et al.  Fluoromethylene Cyanate Ester Resins. Synthesis, Characterization, and Fluoromethylene Chain Length Effects , 1997 .

[12]  Alex K.-Y. Jen,et al.  A Novel Class of High-Performance Perfluorocyclobutane-Containing Polymers for Second-Order Nonlinear Optics , 2000 .

[13]  Werner Groh,et al.  Overtone absorption in macromolecules for polymer optical fibers , 1988 .

[14]  L. Eldada,et al.  Advances in polymer integrated optics , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[15]  Akimasa Kaneko,et al.  Polarization-independent low-crosstalk polymeric AWG-based tunable filter operating around 1.55 μm , 1999 .

[16]  Jong-Uk Bu,et al.  Low-power consumption polymeric attenuator using a micromachined membrane-type waveguide , 2000 .

[17]  James T. Yardley,et al.  Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers , 1996 .

[18]  Alvin P. Kennedy,et al.  Perfluorocyclobutane aromatic ether polymers , 1993 .

[19]  K. Petermann,et al.  Passive alignment of single-mode fibers to integrated polymer waveguide structures utilizing a single-mask process , 1999, IEEE Photonics Technology Letters.

[20]  Hiroaki Inoue,et al.  A 1/spl times/8 digital-optical switch using fluorinated-polyimide waveguides , 1998 .

[21]  Ian Hamerton,et al.  Chemistry and Technology of Cyanate Ester Resins , 2013 .

[22]  Larry R. Dalton,et al.  Rare-earth organic complexes for amplification in polymer optical fibers and waveguides , 1997 .

[23]  Saburo Imamura,et al.  Influence of Temperature and Humidity Change on Optical Waveguide Circuits Composed of Deuterated and Fluorinated Methacrylate Polymers , 1995 .

[24]  Gang Zheng,et al.  Rare-earth-doped polymers for optical amplification and lasing , 1998, Photonics West.

[25]  Junya Kobayashi,et al.  Directional couplers using fluorinated polyimide waveguides , 1998 .

[26]  Tae-Kyung Yoo,et al.  Polymeric tunable optical attenuator with an optical monitoring tap for WDM transmission network , 1999 .

[27]  L. Eldada,et al.  Integrated multichannel OADMs using polymer Bragg grating MZIs , 1998, IEEE Photonics Technology Letters.

[28]  Y. Koike,et al.  Photosensitivity in low-loss perfluoropolymer (CYTOP) fibre material , 2001 .

[29]  Robert A Norwood,et al.  Affordable WDM components: the polymer solution , 1998, Other Conferences.

[30]  Saburo Imamura,et al.  Low-loss passive polymer optical waveguides with high environmental stability , 1996 .

[31]  Charles A. Langhoff,et al.  Perfluorocyclobutane (PFCB) polyaryl ethers: versatile coatings materials , 2000 .

[32]  Min-Cheol Oh,et al.  Polymeric waveguide polarization splitter with a buried birefringent polymer , 1999 .

[33]  Larry R. Dalton,et al.  Polymeric electro-optic materials: optimization of electro-optic activity, minimization of optical loss, and fine-tuning of device performance , 2000 .

[34]  L. Eldada,et al.  Compact wide-band polymer wavelength-division multiplexers , 2000, IEEE Photonics Technology Letters.

[35]  Byung-Tak Lee,et al.  Fabrication of polymeric large-core waveguides for optical interconnects using a rubber molding process , 2000 .

[36]  Yong Hyub Won,et al.  Very low crosstalk 1×2 digital optical switch integrated with variable optical attenuators , 2001 .

[37]  Seng-Tiong Ho,et al.  Polymer waveguides useful over a very wide wavelength range from the ultraviolet to infrared , 2000 .

[38]  K. Petermann,et al.  4 x 4 digital optical matrix switch using polymeric oversized rib waveguides , 1998, IEEE Photonics Technology Letters.

[39]  B. Strebel,et al.  4*4 polymer thermo-optic directional coupler switch at 1.55 mu m , 1994 .

[40]  Min-Cheol Oh,et al.  Crosslinkable polymers for optical waveguide devices. II. Fluorinated ether ketone oligomers bearing ethynyl group at the chain end , 1999 .

[41]  Takashi Kurihara,et al.  Wide tuning range and low operating power AWG-based thermo-optic wavelength tunable filter using polymer waveguides , 2001 .

[42]  J. Kobayashi,et al.  Fluorinated polyimide waveguides with low polarization-dependent loss and their applications to thermooptic switches , 1998 .

[43]  T. Rhee,et al.  Chloro-Fluorinated Poly(arylene ethers) for Optical Waveguide Application , 1998 .

[44]  N. Hendricks,et al.  Synthesis And Characterization Of Fluorinated Poly(Arylethers): Organic Polymers For Ic Imd , 1995 .

[45]  William W. Anderson,et al.  Low-voltage electro-optic modulation using amorphous polycarbonate host material , 2000, Photonics West - Optoelectronic Materials and Devices.

[46]  J. Do,et al.  Polarization dependent loss in polymeric rib channel waveguide , 2000 .

[47]  L. Eldada,et al.  Thermooptic planar polymer Bragg grating OADMs with broad tuning range , 1999, IEEE Photonics Technology Letters.

[48]  T. Rhee,et al.  Low-loss passive polymer waveguides by using chlorofluorinated polyimides , 1999 .

[49]  T. Rhee,et al.  Synthesis of fluorinated polyimides and their application to passive optical waveguides , 2000 .

[50]  Dennis W. Smith,et al.  Perfluorocyclobutane Aromatic Polyethers. Synthesis and Characterization of New Siloxane-Containing Fluoropolymers† , 1996 .

[51]  S. Ando,et al.  Perfluorinated polyimide synthesis , 1992 .

[52]  J. Vinson,et al.  Polymeric materials for devices in optical fibre systems , 2000 .

[53]  S. Ando,et al.  A rod‐like fluorinated polyimide as an in‐plane birefringent optical material 2: Control of optical retardation using spontaneous molecular orientation , 1999 .

[54]  Fang Wang,et al.  Optical intensity modulator based on a novel electrooptic polymer incorporating high /spl mu//spl beta/ chromophore , 2000, IEEE Journal of Quantum Electronics.

[55]  Akimasa Kaneko,et al.  Wideband polymer thermo-optic wavelength tunable filter with fast response for WDM systems , 2000 .

[56]  J P Cook,et al.  Stable, low-loss optical waveguides and micromirrors fabricated in acrylate polymers. , 1998, Applied optics.

[57]  Robert A Norwood,et al.  Polymer-based waveguide devices for WDM applications , 1999, Optics & Photonics.

[58]  Min-Cheol Oh,et al.  Tunable wavelength filters with Bragg gratings in polymer waveguides , 1998 .

[59]  Min-Cheol Oh,et al.  Asymmetric X-junction thermooptic switches based on fluorinated polymer waveguides , 1998 .

[60]  Bernard Boutevin,et al.  Low loss, low refractive index fluorinated self-crosslinking polymer waveguides for optical applications , 1998 .

[61]  Ming Zhou,et al.  Fluorinated poly(arylene ether ketone)s bearing pentafluorostyrene moieties prepared by a modified polycondensation , 2002 .

[62]  Takahashi Toru,et al.  Synthesis and optical properties of polyimides , 2000 .

[63]  H. Takahashi,et al.  Athermal silica-based arrayed-waveguide grating (AWG) multiplexers with new low loss groove design , 1999, OFC/IOOC . Technical Digest. Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication.

[64]  Jae-Wook Kang,et al.  Low-loss fluorinated poly(arylene ether sulfide) waveguides with high thermal stability , 2001 .

[65]  Anders Hult,et al.  Low-Loss Passive Optical Waveguides Based on Photosensitive Poly(pentafluorostyrene-co-glycidyl methacrylate) , 1999 .

[66]  K. Satzke,et al.  Hybrid polymer/silica vertical coupler switch with <-32 dB polarisation-independent crosstalk , 2001 .

[67]  A. Snow,et al.  NCOCH2(CF2)6CH2OCN cyanate ester resin. A detailed study , 1999 .

[68]  Klaus Petermann,et al.  Singlemode optical waveguides using a high temperature stable polymer with low losses in the 1.55 /spl mu/m range , 1997 .

[69]  Norbert Keil,et al.  Athermal all-polymer arrayed-waveguide grating multiplexer , 2001 .

[70]  G. Khanarian Optical properties of cyclic olefin copolymers , 2001 .

[71]  K. Petermann,et al.  Crosstalk-enhanced polymer digital optical switch based on a W-shape , 2000, IEEE Photonics Technology Letters.

[72]  Yung-Sung Son,et al.  Variable optical attenuator based on a cutoff modulator with tapered waveguides in polymers , 1999 .

[73]  D. W. Duff,et al.  Synthesis and characterization of fluorinated aryl ethers prepared from decafluorobiphenyl , 1992 .

[74]  S. Herminghaus,et al.  Electro-Optical Properties of Waveguides Based on a Main-Chain Nonlinear Optical Polyamide , 1997 .

[75]  Saburo Imamura,et al.  Polymeric optical waveguide circuits formed using silicone resin , 1998 .

[76]  Michael J. McFarland,et al.  High-performance polymeric componentry for telecom and datacom applications , 2000 .

[77]  Min-Cheol Oh,et al.  Crosslinkable fluorinated poly(arylene ethers) bearing phenyl ethynyl moiety for low‐loss polymer optical waveguide devices , 1998 .

[78]  Yasuyuki Inoue,et al.  Elimination of polarization sensitivity in silica-based wavelength division multiplexer using a polyimide half waveplate , 1997 .

[79]  Saburo Imamura,et al.  Low-loss polymeric optical waveguides fabricated with deuterated polyfluoromethacrylate , 1998 .

[80]  Michael J. McFarland,et al.  Fluorinated acrylates in making low-loss, low-birefringence, and single-mode optical waveguides with exceptional thermo-optic properties , 1999, Optics & Photonics.

[81]  Takashi Kurihara,et al.  Low crosstalk and low loss 2/spl times/2 thermo-optic digital optical switch using silicone resin waveguides , 2000 .

[82]  Robert J. Furmanak,et al.  Polyguide polymeric technology for optical interconnect circuits and components , 1997, Photonics West.

[83]  G. Whitesides,et al.  Unconventional Methods for Fabricating and Patterning Nanostructures. , 1999, Chemical reviews.

[84]  K. Takiguchi,et al.  Athermal silica-based optical add/drop multiplexer consisting of arrayed waveguide gratings and double gate thermo-optical switches , 2000 .

[85]  Antao Chen,et al.  From molecules to opto-chips: organic electro-optic materials , 1999 .

[86]  Johannes W. Hofstraat,et al.  Copolymers of halogenated acrylates and methacrylates for the application in optical telecommunication: optical properties, thermal analysis and determination of unsaturation by quantitative FT-Raman and FT-IR spectroscopy , 2000 .

[87]  A. A. Goodwin,et al.  Thermal behavior of fluorinated aromatic polyethers and poly(ether ketone)s , 1997 .

[88]  Zhang,et al.  Low (Sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape , 2000, Science.

[89]  Saburo Imamura,et al.  Propagation loss and birefringence properties around 1.55 μm of polymeric optical waveguides fabricated with cross-linked silicone , 2000 .

[90]  B. Strebel,et al.  Rearrangeable nonblocking polymer waveguide thermo-optic 4*4 switching matrix with low power consumption at 1.55 mu m , 1995 .