Toward the Growth of High Mobility 2D Transition Metal Dichalcogenide Semiconductors

The development of integrated circuits greatly relies on the continuous dimension downscaling in material size and thickness. However, the miniaturization of silicon‐based transistors is facing fundamental limitations and the geometry scaling trend for silicon‐based microelectronics is becoming plateaued. With the continuous scaling of the gate length, overlapping junctions may lead to short channel effects degrading the transistor performance. Two‐dimensional (2D) monolayers, especially layered transition metal dichalcogenides (TMDCs) have emerged as a new class of materials, which offer several attractive features for electronic devices, including excellent thermal stability, flexibility, tunable bandgap, and high mobility. This review focuses on the key factors that determine the electrical performance of 2D TMDCs. From the device fabrication point of view, the interfacial properties between 2D TMDCs, electrode contacts, substrates, dielectric layers, and ambient environment dominate the device performances. Recent efforts on surface engineering for achieving high carrier mobility in TMDCs are reviewed. Fundamentally, the mobility of 2D materials is often hindered by charge scattering mechanism from the lattice defects or grain boundaries. The growth of high‐quality TMDCs monolayers is essentially important for the large‐scale fabrication of TMDCs‐based integrated circuits. This paper further gives the outlook for future research directions, challenges, and possible development for 2D semiconducting electronics.

[1]  C. Ross,et al.  Crested two-dimensional transistors , 2019, Nature Nanotechnology.

[2]  Young Hee Lee,et al.  Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation , 2018, Science.

[3]  Sang-Hoon Bae,et al.  Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials , 2018, Science.

[4]  Zhenxing Wang,et al.  Edge‐Epitaxial Growth of 2D NbS2‐WS2 Lateral Metal‐Semiconductor Heterostructures , 2018, Advanced materials.

[5]  H. Kwok,et al.  Feasible Route for a Large Area Few-Layer MoS2 with Magnetron Sputtering , 2018, Nanomaterials.

[6]  S. Pennycook,et al.  Molecular Beam Epitaxy of Highly Crystalline MoSe2 on Hexagonal Boron Nitride. , 2018, ACS nano.

[7]  Zhenxing Wang,et al.  High-performance, multifunctional devices based on asymmetric van der Waals heterostructures , 2018, Nature Electronics.

[8]  Zhenhua Ni,et al.  Two-dimensional transition metal dichalcogenides: interface and defect engineering. , 2018, Chemical Society reviews.

[9]  Qingsheng Zeng,et al.  One-Step Synthesis of Metal/Semiconductor Heterostructure NbS2/MoS2 , 2018 .

[10]  Yu Huang,et al.  Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions , 2018, Nature.

[11]  Chuanghan Hsu,et al.  A library of atomically thin metal chalcogenides , 2018, Nature.

[12]  H. Yang,et al.  Significant photoluminescence enhancement in WS2 monolayers through Na2S treatment. , 2018, Nanoscale.

[13]  Zhongfan Liu,et al.  Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass , 2018, Nature Communications.

[14]  Lain‐Jong Li,et al.  Epitaxial Growth of Two-Dimensional Layered Transition-Metal Dichalcogenides: Growth Mechanism, Controllability, and Scalability. , 2017, Chemical reviews.

[15]  Ying-Hao Chu Van der Waals oxide heteroepitaxy , 2017 .

[16]  C. Lien,et al.  Multilayer Graphene-WSe2 Heterostructures for WSe2 Transistors. , 2017, ACS nano.

[17]  Hyeong Rae Noh,et al.  Coplanar semiconductor-metal circuitry defined on few-layer MoTe2 via polymorphic heteroepitaxy. , 2017, Nature nanotechnology.

[18]  Kenji Watanabe,et al.  van der Waals Bonded Co/h-BN Contacts to Ultrathin Black Phosphorus Devices. , 2017, Nano letters.

[19]  L. Cavallo,et al.  Substrate Lattice-Guided Seed Formation Controls the Orientation of 2D Transition-Metal Dichalcogenides. , 2017, ACS nano.

[20]  J. Kong,et al.  Monolayer Tungsten Disulfide (WS2 ) via Chlorine-Driven Chemical Vapor Transport. , 2017, Small.

[21]  Lin Gu,et al.  Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode , 2017, Nature Communications.

[22]  H. Jeong,et al.  Heterogeneous Defect Domains in Single‐Crystalline Hexagonal WS2 , 2017, Advanced materials.

[23]  Zhongfan Liu,et al.  Direct Chemical Vapor Deposition Growth and Band-Gap Characterization of MoS2/h-BN van der Waals Heterostructures on Au Foils. , 2017, ACS nano.

[24]  Kai Xu,et al.  Sub-10 nm Nanopattern Architecture for 2D Material Field-Effect Transistors. , 2017, Nano letters.

[25]  Wei Liu,et al.  Chemical Vapor Deposition of Large-Size Monolayer MoSe2 Crystals on Molten Glass. , 2017, Journal of the American Chemical Society.

[26]  Peng Li,et al.  Laterally Stitched Heterostructures of Transition Metal Dichalcogenide: Chemical Vapor Deposition Growth on Lithographically Patterned Area. , 2016, ACS nano.

[27]  Yongsuk Choi,et al.  Multibit MoS2 Photoelectronic Memory with Ultrahigh Sensitivity , 2016, Advanced materials.

[28]  D. Muller,et al.  Large-scale chemical assembly of atomically thin transistors and circuits. , 2016, Nature nanotechnology.

[29]  Moon J. Kim,et al.  MoS2 transistors with 1-nanometer gate lengths , 2016, Science.

[30]  Zhiyong Fan,et al.  High Mobility MoS2 Transistor with Low Schottky Barrier Contact by Using Atomic Thick h‐BN as a Tunneling Layer , 2016, Advanced materials.

[31]  M. Iqbal,et al.  Large-area, continuous and high electrical performances of bilayer to few layers MoS2 fabricated by RF sputtering via post-deposition annealing method , 2016, Scientific Reports.

[32]  J. Xiong,et al.  Booming Development of Group IV–VI Semiconductors: Fresh Blood of 2D Family , 2016, Advanced science.

[33]  Moon J. Kim,et al.  Large-Area Deposition of MoS2 by Pulsed Laser Deposition with In Situ Thickness Control. , 2016, ACS nano.

[34]  V. Dravid,et al.  Growth Mechanism of Transition Metal Dichalcogenide Monolayers: The Role of Self-Seeding Fullerene Nuclei. , 2016, ACS nano.

[35]  P. K. Nayak,et al.  Recent Developments in p‐Type Oxide Semiconductor Materials and Devices , 2016, Advanced materials.

[36]  E. Vogel,et al.  Resonant Light-Induced Heating in Hybrid Cavity-Coupled 2D Transition-Metal Dichalcogenides , 2016 .

[37]  R. D. Rodriguez,et al.  Tunable Graphene–GaSe Dual Heterojunction Device , 2016, Advanced materials.

[38]  Jiaqiang Yan,et al.  Low-Resistance 2D/2D Ohmic Contacts: A Universal Approach to High-Performance WSe2, MoS2, and MoSe2 Transistors. , 2016, Nano letters.

[39]  Yang‐Kook Sun,et al.  Direct Growth of MoS₂/h-BN Heterostructures via a Sulfide-Resistant Alloy. , 2016, ACS nano.

[40]  Jun Wang,et al.  Optical identification of layered MoS2 via the characteristic matrix method. , 2016, Nanoscale.

[41]  G. Brocks,et al.  Ohmic Contacts to 2D Semiconductors through van der Waals Bonding , 2016, 1601.02163.

[42]  H. Kuo,et al.  Photoluminescence Enhancement and Structure Repairing of Monolayer MoSe2 by Hydrohalic Acid Treatment. , 2016, ACS nano.

[43]  M. Dresselhaus,et al.  Parallel Stitching of 2D Materials , 2015, Advanced materials.

[44]  E. Yablonovitch,et al.  Near-unity photoluminescence quantum yield in MoS2 , 2015, Science.

[45]  A. Castellanos-Gómez,et al.  Gate Controlled Photocurrent Generation Mechanisms in High-Gain In₂Se₃ Phototransistors. , 2015, Nano letters.

[46]  Y. Jung,et al.  Controlled Doping of Vacancy-Containing Few-Layer MoS2 via Highly Stable Thiol-Based Molecular Chemisorption. , 2015, ACS nano.

[47]  Lianmao Peng,et al.  Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils , 2015, Nature Communications.

[48]  Qingsheng Zeng,et al.  Controlled Synthesis of High-Quality Monolayered α-In2Se3 via Physical Vapor Deposition. , 2015, Nano letters.

[49]  L. Dai,et al.  Interference effect on optical signals of monolayer MoS2 , 2015 .

[50]  Suyeon Cho,et al.  Phase patterning for ohmic homojunction contact in MoTe2 , 2015, Science.

[51]  Miaofang Chi,et al.  Van der Waals Epitaxial Growth of Two-Dimensional Single-Crystalline GaSe Domains on Graphene. , 2015, ACS nano.

[52]  M. Ge,et al.  Step-Edge-Guided Nucleation and Growth of Aligned WSe2 on Sapphire via a Layer-over-Layer Growth Mode. , 2015, ACS nano.

[53]  H. Choi,et al.  Metal Semiconductor Field-Effect Transistor with MoS2/Conducting NiO(x) van der Waals Schottky Interface for Intrinsic High Mobility and Photoswitching Speed. , 2015, ACS nano.

[54]  Lain-Jong Li,et al.  Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. , 2015, Chemical Society reviews.

[55]  Kenji Watanabe,et al.  Direct Growth of Single- and Few-Layer MoS2 on h-BN with Preferred Relative Rotation Angles. , 2015, Nano letters.

[56]  J. Warner,et al.  All Chemical Vapor Deposition Growth of MoS2:h-BN Vertical van der Waals Heterostructures. , 2015, ACS nano.

[57]  A. Pak,et al.  Thickness-Dependent Dielectric Constant of Few-Layer In₂Se₃ Nanoflakes. , 2015, Nano letters.

[58]  M. Chi,et al.  Revealing the preferred interlayer orientations and stackings of two-dimensional bilayer gallium selenide crystals. , 2015, Angewandte Chemie.

[59]  Ming C. Wu,et al.  Engineering light outcoupling in 2D materials. , 2015, Nano letters.

[60]  Feng Ding,et al.  Synthesis of large single-crystal hexagonal boron nitride grains on Cu–Ni alloy , 2015, Nature Communications.

[61]  P. Ajayan,et al.  Synthesis and defect investigation of two-dimensional molybdenum disulfide atomic layers. , 2015, Accounts of chemical research.

[62]  Oriol López Sánchez,et al.  Large-Area Epitaxial Monolayer MoS2 , 2015, ACS nano.

[63]  Gautam Gupta,et al.  Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. , 2014, Nature materials.

[64]  W. Cao,et al.  Back Gated Multilayer InSe Transistors with Enhanced Carrier Mobilities via the Suppression of Carrier Scattering from a Dielectric Interface , 2014, Advanced materials.

[65]  P. Ajayan,et al.  Metallic 1T phase source/drain electrodes for field effect transistors from chemical vapor deposited MoS2 , 2014 .

[66]  Jinlan Wang,et al.  Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering , 2014, Nature Communications.

[67]  C. Hu,et al.  Field-effect transistors built from all two-dimensional material components. , 2014, ACS nano.

[68]  Chongwu Zhou,et al.  High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors. , 2014, ACS nano.

[69]  Jiaqiang Yan,et al.  Mobility improvement and temperature dependence in MoSe2 field-effect transistors on parylene-C substrate. , 2014, ACS nano.

[70]  Yanrong Li,et al.  Two-dimensional semiconductors with possible high room temperature mobility , 2014, Nano Research.

[71]  L. Lauhon,et al.  Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. , 2014, ACS nano.

[72]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[73]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[74]  Zhi-Xun Shen,et al.  Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. , 2014, Nature nanotechnology.

[75]  Kangho Lee,et al.  High‐Performance Sensors Based on Molybdenum Disulfide Thin Films , 2013, Advanced materials.

[76]  J. Myoung,et al.  Layer-controlled, wafer-scale, and conformal synthesis of tungsten disulfide nanosheets using atomic layer deposition. , 2013, ACS nano.

[77]  Kyeongjae Cho,et al.  Metal contacts on physical vapor deposited monolayer MoS2. , 2013, ACS nano.

[78]  Takashi Taniguchi,et al.  Epitaxial growth of single-domain graphene on hexagonal boron nitride. , 2013, Nature materials.

[79]  L. Eaves,et al.  Tuning the Bandgap of Exfoliated InSe Nanosheets by Quantum Confinement , 2013, Advanced materials.

[80]  Ching-Ping Wong,et al.  High‐Concentration Aqueous Dispersions of MoS2 , 2013 .

[81]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[82]  Lain-Jong Li,et al.  High‐Gain Phototransistors Based on a CVD MoS2 Monolayer , 2013, Advanced materials.

[83]  P. Ajayan,et al.  Synthesis and photoresponse of large GaSe atomic layers. , 2013, Nano letters.

[84]  Jing Kong,et al.  Intrinsic structural defects in monolayer molybdenum disulfide. , 2013, Nano letters.

[85]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[86]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[87]  Xiaodong Xu,et al.  Vapor-solid growth of high optical quality MoS₂ monolayers with near-unity valley polarization. , 2013, ACS nano.

[88]  B. Radisavljevic,et al.  Mobility engineering and a metal-insulator transition in monolayer MoS₂. , 2013, Nature materials.

[89]  M. Motta,et al.  Superconducting properties of corner-shaped Al microstrips , 2013, 1301.2564.

[90]  J. Appenzeller,et al.  High performance multilayer MoS2 transistors with scandium contacts. , 2013, Nano letters.

[91]  Hongzheng Chen,et al.  Graphene-like two-dimensional materials. , 2013, Chemical reviews.

[92]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[93]  M. Aono,et al.  Selective Adsorption of Thiol Molecules at Sulfur Vacancies on MoS2(0001), Followed by Vacancy Repair via S–C Dissociation , 2012 .

[94]  Kinam Kim,et al.  High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals , 2012, Nature Communications.

[95]  J. Kong,et al.  Integrated circuits based on bilayer MoS₂ transistors. , 2012, Nano letters.

[96]  K. Tsukagoshi,et al.  Quantitative Raman spectrum and reliable thickness identification for atomic layers on insulating substrates. , 2012, ACS nano.

[97]  B. Liu,et al.  GaS and GaSe Ultrathin Layer Transistors , 2012, Advanced materials.

[98]  A. Javey,et al.  High-performance single layered WSe₂ p-FETs with chemically doped contacts. , 2012, Nano letters.

[99]  Lifeng Wang,et al.  Synthesis of few-layer GaSe nanosheets for high performance photodetectors. , 2012, ACS nano.

[100]  Jing Kong,et al.  van der Waals epitaxy of MoS₂ layers using graphene as growth templates. , 2012, Nano letters.

[101]  Bin Liu,et al.  Hysteresis in single-layer MoS2 field effect transistors. , 2012, ACS nano.

[102]  Lain‐Jong Li,et al.  Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition , 2012, Advanced materials.

[103]  Jing Kong,et al.  Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. , 2012, Nano letters.

[104]  Hua Zhang,et al.  Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. , 2012, Small.

[105]  Adrian M. Ionescu,et al.  Tunnel field-effect transistors as energy-efficient electronic switches , 2011, Nature.

[106]  Arindam Ghosh,et al.  Nature of electronic states in atomically thin MoS₂ field-effect transistors. , 2011, ACS nano.

[107]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[108]  Jing Kong,et al.  Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. , 2010, Nano letters.

[109]  A. Reina,et al.  Work function engineering of graphene electrode via chemical doping. , 2010, ACS nano.

[110]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[111]  P. Solomon,et al.  It’s Time to Reinvent the Transistor! , 2010, Science.

[112]  F. Schwierz Graphene transistors. , 2010, Nature nanotechnology.

[113]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[114]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[115]  K. Novoselov,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[116]  Mark S. Lundstrom,et al.  APPLIED PHYSICS: Enhanced: Moore's Law Forever? , 2003 .

[117]  A. Koma Van der Waals epitaxy for highly lattice-mismatched systems , 1999 .

[118]  Y. J. Park,et al.  Electron mobility behavior in extremely thin SOI MOSFET's , 1995 .