Analysis of the occurrence of stick-slip in AFM-based nano-pushing

The use of the Atomic Force Microscope (AFM) as a tool to manipulate matter at the nanoscale is promising. However, the complexity of the corresponding physics and mechanics makes such nanomanipulation difficult and not very accurate. In the present paper, we analyze the dynamics of AFM-based nano-pushing manipulation. Simulation results show that the choice of the manipulation speed and loading force highly affect the manipulation outcome. In addition, simulations predict the existence of several threshold manipulation speeds. These thresholds mark the transitions between no stick-slip motion and either unique or multiple coexisting stick-slip. The obtained results bear significant implications and help get more insight into AFM-based nano-pushing.

[1]  Fathi H. Ghorbel,et al.  Nanoscale Friction Dynamic Modeling , 2009 .

[2]  Ying Wang,et al.  Nanostructures and Nanomaterials: Synthesis, Properties and Applications , 2004 .

[3]  Falvo,et al.  Nanomanipulation Experiments Exploring Frictional and Mechanical Properties of Carbon Nanotubes , 1998, Microscopy and Microanalysis.

[4]  Alejandro Bugacov,et al.  Building and Manipulating Three-Dimensional and Linked Two-Dimensional Structures of Nanoparticles Using Scanning Force Microscopy , 1998 .

[5]  E. Meyer,et al.  Friction experiments on the nanometre scale , 2001 .

[6]  Pascal Gallo,et al.  Scanning local‐acceleration microscopy , 1996 .

[7]  R. Prioli,et al.  Influence of velocity in nanoscale friction processes , 2003 .

[8]  H. Hashimoto,et al.  Controlled pushing of nanoparticles: modeling and experiments , 2000 .

[9]  B. Bhushan Handbook of micro/nano tribology , 1995 .

[10]  M. Sitti,et al.  Atomic force microscope based two-dimensional assembly of micro/nanoparticles , 2005, (ISATP 2005). The 6th IEEE International Symposium on Assembly and Task Planning: From Nano to Macro Assembly and Manufacturing, 2005..

[11]  Complex Dynamics of Real Nanosystems: Fundamental Paradigm for Nanoscience and Nanotechnology , 2004, physics/0412097.

[12]  F. Allgöwer,et al.  High performance feedback for fast scanning atomic force microscopes , 2001 .

[13]  C. Dekker,et al.  Carbon Nanotube Single-Electron Transistors at Room Temperature , 2001, Science.

[14]  T. Okada,et al.  The two-dimensional stick-slip phenomenon with atomic resolution , 1993 .

[15]  S. Ziaei-Rad,et al.  Influence of the tip mass and position on the AFM cantilever dynamics: coupling between bending, torsion and flexural modes. , 2009, Ultramicroscopy.

[16]  Calvin F. Quate,et al.  Atomic force microscopy for high speed imaging using cantilevers with an integrated actuator and sensor , 1996 .

[17]  L. Samuelson,et al.  Controlled manipulation of nanoparticles with an atomic force microscope , 1995 .

[18]  Murti V. Salapaka,et al.  High bandwidth nano-positioner: A robust control approach , 2002 .

[19]  Meyer,et al.  Velocity dependence of atomic friction , 2000, Physical review letters.

[20]  Charles M. Krousgrill,et al.  Nonlinear dynamics in Tomlinson’s model for atomic-scale friction and friction force microscopy , 2005 .

[21]  James B. Dabney,et al.  An AFM-Based Nanomanipulation Model Describing the Atomic Two Dimensional Stick-Slip Behavior , 2007 .

[22]  A. Madhukar,et al.  Manipulation of nanoparticles using dynamic force microscopy: simulation and experiments , 1998 .

[23]  James B. Dabney,et al.  Nanomanipulation modeling and simulation , 2006 .

[24]  Thierry Baron,et al.  Atomic force microscopy nanomanipulation of silicon nanocrystals for nanodevice fabrication , 2003 .

[25]  W. Arnold,et al.  High-frequency response of atomic-force microscope cantilevers , 1997 .

[26]  J. Hosson,et al.  Influence of spring stiffness and anisotropy on stick‐slip atomic force microscopy imaging , 1996 .

[27]  J. Israelachvili Intermolecular and surface forces , 1985 .

[28]  Yan Yan,et al.  A control approach to high-speed probe-based nanofabrication , 2009, ACC.

[29]  Robert W. Stark,et al.  Nanomanipulation by Atomic Force Microscopy , 2005 .

[30]  Hideki Kawakatsu,et al.  Velocity Dependence and Limitations of Friction Force Microscopy of Mica and Graphite , 2000 .

[31]  Ronald P. Andres,et al.  Fabrication of two‐dimensional arrays of nanometer‐size clusters with the atomic force microscope , 1995 .

[32]  Seizo Morita,et al.  Spatially quantized friction with a lattice periodicity , 1996 .

[33]  S Devasia,et al.  CONTROL ISSUES IN HIGH‐SPEED AFM FOR BIOLOGICAL APPLICATIONS: COLLAGEN IMAGING EXAMPLE , 2004, Asian journal of control.

[34]  R. Superfine,et al.  Nanometre-scale rolling and sliding of carbon nanotubes , 1999, Nature.

[35]  Jim Woodhouse,et al.  Stick–slip motion in the atomic force microscope , 1998 .