Direct Determination of Fluid Phase Equilibria by Simulation in the Gibbs Ensemble: A Review

Abstract This paper provides an extensive review of the literature on the Gibbs ensemble Monte Carlo method for direct determination of phase coexistence in fluids. The Gibbs ensemble technique is based on performing a simulation in two distinct regions in a way that ensures that the conditions of phase coexistence are satisfied in a statistical sense. Contrary to most other available techniques for this purpose, such as thermodynamic integration, grand canonical Monte Carlo or Widom test particle insertions, the Gibbs ensemble technique involves only a single simulation per coexistence point. A significant body of literature now exists on the method, its theoretical foundations, and proposed modifications for efficient determination of equilibria involving dense fluids and complex intermolecular potentials. Some practical aspects of Gibbs ensemble simulation are also discussed in this review. Applications of the technique to date range from studies of simple model potentials (for example Lennard–Jones, s...

[1]  A. Panagiotopoulos Molecular simulation of phase equilibria: simple, ionic and polymeric fluids , 1992 .

[2]  J. Pablo,et al.  Vapor-liquid equilibria for polyatomic fluids from site-site computer simulations: pure hydrocarbons and binary mixtures containing methane , 1992 .

[3]  Kurt Binder,et al.  Finite size effects for the simulation of phase coexistence in the Gibbs ensemble near the critical point , 1992 .

[4]  Juan J. de Pablo,et al.  Estimation of the chemical potential of chain molecules by simulation , 1992 .

[5]  Berend Smit,et al.  Novel scheme to study structural and thermal properties of continuously deformable molecules , 1992 .

[6]  L. F. Rull,et al.  Phase equilibria and critical behavior of square‐well fluids of variable width by Gibbs ensemble Monte Carlo simulation , 1992 .

[7]  J. P. Valleau,et al.  Density-scaling: a new Monte Carlo technique in statistical mechanics , 1991 .

[8]  Critical line of He-H2 up to 2500 K and the influence of attraction on fluid-fluid separation. , 1991, Physical review. B, Condensed matter.

[9]  L. F. Rull,et al.  Effect of molecular elongation on liquid-vapour properties: computer simulation and virial approximation , 1991 .

[10]  A. Panagiotopoulos,et al.  Evaluation of a statistical-mechanical virial equation of state, using Gibbs-ensemble molecular simulations , 1991 .

[11]  D. Frenkel,et al.  Vapour-liquid equilibria of the hard core Yukawa fluid , 1991 .

[12]  A. Panagiotopoulos,et al.  Investigation of the transition to liquid-liquid immiscibilitym for Lennard-Jones (12,6) systems, using Gibbs-ensemble molecular simulations , 1991 .

[13]  J. P. Valleau,et al.  The Coulombic phase transition : density-scaling Monte Carlo , 1991 .

[14]  Kumar,et al.  Determination of the chemical potentials of polymeric systems from Monte Carlo simulations. , 1991, Physical review letters.

[15]  D. Tsangaris,et al.  A Modified Gibbs Ensemble Method for Calculating Fluid Phase Equilibria , 1991 .

[16]  Berend Smit,et al.  Vapor-liquid equilibria of the two-dimensional Lennard-Jones fluid(s) , 1991 .

[17]  C. Hall,et al.  Square-well diatomics: Bulk equation of state, density profiles near walls, virial coefficients and coexistence properties , 1991 .

[18]  L. F. Rull,et al.  LOCATION OF THE ISOTROPIC-NEMATIC TRANSITION IN THE GAY-BERNE MODEL , 1991 .

[19]  A. Harvey,et al.  Computer simulation of fluid–fluid phase coexistence in mixtures of nonadditive soft disks , 1991 .

[20]  D. Frenkel,et al.  Melting line of Yukawa system by computer simulation , 1991 .

[21]  L. F. Rull,et al.  LIQUID-VAPOUR COEXISTENCE OF THE GAY-BERNE FLUID BY GIBBS-ENSEMBLE SIMULATION , 1990 .

[22]  B. Smit,et al.  Fluid-fluid phase separation in a Repulsive $alpha$-$exp$-6 mixture: a comparison with the full $alpha$-$exp$-6 mixture by means of computer simulations , 1990 .

[23]  R. Cracknell,et al.  Rotational insertion bias: a novel method for simulating dense phases of structured particles, with particular application to water , 1990 .

[24]  J. Prausnitz,et al.  Molecular simulation of water along the liquid–vapor coexistence curve from 25 °C to the critical point , 1990 .

[25]  B. Smit,et al.  Free energy computations of mixtures of Stockmayer and polerizable Lennard-Jones fluids , 1990 .

[26]  J. I. Siepmann,et al.  A method for the direct calculation of chemical potentials for dense chain systems , 1990 .

[27]  B. Smit,et al.  Vapour-liquid equilibria for quadrupolar Lennard-Jones fluids , 1990 .

[28]  Juan J. de Pablo,et al.  Monte Carlo simulation of phase equilibria for the two-dimensional Lennard-Jones fluid in the Gibbs ensemble , 1990 .

[29]  D. Tildesley,et al.  Phase equilibria in polydisperse fluids , 1990 .

[30]  Johann Fischer,et al.  Vapour liquid equilibrium of a pure fluid from test particle method in combination with NpT molecular dynamics simulations , 1990 .

[31]  A. Panagiotopoulos,et al.  Application of excluded volume map sampling to phase equilibrium calculations in the Gibbs ensemble , 1990 .

[32]  J. Pablo,et al.  Phase equilibria for fluid mixtures from monte-carlo simulation , 1989 .

[33]  D. Frenkel,et al.  Computer simulations in the Gibbs ensemble , 1989 .

[34]  P. Cummings,et al.  Gibbs ensemble simulation of phase equilibrium in the hard core two-Yukawa fluid model for the Lennard-Jones fluid , 1989 .

[35]  B. Smit,et al.  Vapour-liquid equilibria for Stockmayer fluids , 1989 .

[36]  A. Panagiotopoulos,et al.  Gibbs-Ensemble Monte Carlo Simulations of Phase Equilibria in Supercritical Fluid Mixtures , 1989 .

[37]  J. Amar Application of the Gibbs ensemble to the study of fluid-fluid phase equilibrium in a binary mixture of symmetric non-additive hard spheres , 1989 .

[38]  K. Pitzer Some interesting properties of vapor-liquid or liquid-liquid coexistence curves for ionic and non-ionic fluids , 1989 .

[39]  A. Panagiotopoulos Exact calculations of fluid-phase equilibria by Monte Carlo simulation in a new statistical ensemble , 1989 .

[40]  L. Scriven,et al.  Efficient molecular simulation of chemical potentials , 1989 .

[41]  D. Tildesley,et al.  Phase Equilibria of Quadrupolar Fluids by Simulation in the Gibbs Ensemble , 1989 .

[42]  K. Gubbins The Role of Computer Simulation in Studying Fluid Phase Equilibria , 1989 .

[43]  E. Glandt,et al.  Monte Carlo simulation of multicomponent equilibria in a semigrand canonical ensemble , 1988 .

[44]  Athanassios Z. Panagiotopoulos,et al.  Phase equilibria by simulation in the Gibbs ensemble , 1988 .

[45]  Athanassios Z. Panagiotopoulos,et al.  Adsorption and capillary condensation of fluids in cylindrical pores by Monte Carlo simulation in the Gibbs ensemble , 1987 .

[46]  K. Gubbins,et al.  Liquid-vapour coexistence in a cylindrical pore , 1987 .

[47]  W. G. Madden,et al.  Monte Carlo studies of the melt–vacuum interface of a lattice polymer , 1987 .

[48]  A. Panagiotopoulos Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble , 1987 .

[49]  R. Reid,et al.  Phase diagrams of nonideal fluid mixtures from Monte Carlo simulation , 1986 .

[50]  D. J. Tildesley,et al.  Computer simulation of molecular liquid mixtures. I. A diatomic Lennard‐Jones model mixture for CO2/C2H6 , 1986 .

[51]  M. Schoen,et al.  Static and dynamic cross correlation in thermodynamically stable and unstable mixtures , 1984 .

[52]  William L. Jorgensen,et al.  Optimized intermolecular potential functions for liquid hydrocarbons , 1984 .

[53]  R. Eppenga,et al.  Monte Carlo study of the isotropic and nematic phases of infinitely thin hard platelets , 1984 .

[54]  K. Shing,et al.  The chemical potential in non-ideal liquid mixtures , 1983 .

[55]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[56]  W. L. Jorgensen Revised TIPS for simulations of liquid water and aqueous solutions , 1982 .

[57]  G. Stell,et al.  Critical Point in a Fluid of Charged Hard Spheres , 1976 .

[58]  D. J. Adams,et al.  Calculating the high-temperature vapour line by Monte Carlo , 1976 .

[59]  Jean-Pierre Hansen,et al.  Phase Transitions of the Lennard-Jones System , 1969 .

[60]  B. Widom,et al.  Some Topics in the Theory of Fluids , 1963 .

[61]  B. Alder,et al.  Studies in Molecular Dynamics. I. General Method , 1959 .

[62]  A. W. Rosenbluth,et al.  MONTE CARLO CALCULATION OF THE AVERAGE EXTENSION OF MOLECULAR CHAINS , 1955 .

[63]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[64]  A. Panagiotopoulos,et al.  How good is conformal solutions theory for phase equilibrium predictions?: Gibbs ensemble simulations of binary Lennard-Jones mixtures , 1991 .

[65]  P. Cummings,et al.  Computer Simulation of the Dielectric Properties of Liquid Water , 1989 .

[66]  M. Schoen,et al.  Static and dynamic cross correlation in thermodynamically stable and unstable mixtures: II. Molecular dynamics studies on Lennard-Jones systems consisting of particles of unequal size , 1986 .

[67]  H. Berendsen,et al.  Interaction Models for Water in Relation to Protein Hydration , 1981 .

[68]  J. Rowlinson Molecular Thermodynamics of Fluid-Phase Equilibria , 1969 .

[69]  Anna Walsh STUDIES IN MOLECULAR DYNAMICS , 1965 .

[70]  John S. Rowlinson,et al.  Liquids and liquid mixtures , 1959 .