Mutations in TSPAN12 cause autosomal-dominant familial exudative vitreoretinopathy.

[1]  Fatson Liche,et al.  Familial exudative vitreoretinopathy. , 2012, Ophthalmology.

[2]  D. Rice,et al.  TSPAN12 Regulates Retinal Vascular Development by Promoting Norrin- but Not Wnt-Induced FZD4/β-Catenin Signaling , 2009, Cell.

[3]  J. Nathans,et al.  Norrin, Frizzled-4, and Lrp5 Signaling in Endothelial Cells Controls a Genetic Program for Retinal Vascularization , 2009, Cell.

[4]  H. Clevers Eyeing Up New Wnt Pathway Players , 2009, Cell.

[5]  R. Nusse,et al.  Towards an integrated view of Wnt signaling in development , 2009, Development.

[6]  F. Cremers,et al.  Clinical and molecular evaluation of probands and family members with familial exudative vitreoretinopathy. , 2009, Investigative ophthalmology & visual science.

[7]  M. Wang,et al.  A model for familial exudative vitreoretinopathy caused by LPR5 mutations. , 2008, Human molecular genetics.

[8]  R. DeSalle,et al.  Appearance of new tetraspanin genes during vertebrate evolution. , 2008, Genomics.

[9]  T. Tahira,et al.  Novel mutations in Norrie disease gene in Japanese patients with Norrie disease and familial exudative vitreoretinopathy. , 2007, Investigative ophthalmology & visual science.

[10]  Periasamy Sundaresan,et al.  Identification of novel FZD4 mutations in Indian patients with familial exudative vitreoretinopathy. , 2006, Molecular vision.

[11]  C. Inglehearn,et al.  Reduced bone mineral density and hyaloid vasculature remnants in a consanguineous recessive FEVR family with a mutation in LRP5 , 2006, British Journal of Ophthalmology.

[12]  M. Hemler Tetraspanin functions and associated microdomains , 2005, Nature Reviews Molecular Cell Biology.

[13]  C. Grimm,et al.  Role of the Norrie disease pseudoglioma gene in sprouting angiogenesis during development of the retinal vasculature. , 2005, Investigative ophthalmology & visual science.

[14]  T. Tahira,et al.  Complexity of the genotype–phenotype correlation in familial exudative vitreoretinopathy with mutations in the LRP5 and/or FZD4 genes , 2005, Human mutation.

[15]  W. DeGrado,et al.  Structural organization and interactions of transmembrane domains in tetraspanin proteins , 2005, BMC Structural Biology.

[16]  M. Bouxsein,et al.  Decreased BMD and Limb Deformities in Mice Carrying Mutations in Both Lrp5 and Lrp6 , 2004, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[17]  M. Trese,et al.  Autosomal recessive familial exudative vitreoretinopathy is associated with mutations in LRP5. , 2004, American journal of human genetics.

[18]  Kang Zhang,et al.  Spectrum and frequency of FZD4 mutations in familial exudative vitreoretinopathy. , 2004, Investigative ophthalmology & visual science.

[19]  Michael J Parker,et al.  Mutations in LRP5 or FZD4 underlie the common familial exudative vitreoretinopathy locus on chromosome 11q. , 2004, American journal of human genetics.

[20]  J. Nathans,et al.  Vascular Development in the Retina and Inner Ear Control by Norrin and Frizzled-4, a High-Affinity Ligand-Receptor Pair , 2004, Cell.

[21]  Rodrigo Lopez,et al.  Multiple sequence alignment with the Clustal series of programs , 2003, Nucleic Acids Res..

[22]  K Oshima,et al.  Frizzled 4 gene (FZD4) mutations in patients with familial exudative vitreoretinopathy with variable expressivity , 2003, The British journal of ophthalmology.

[23]  T. V. Kolesnikova,et al.  Functional domains in tetraspanin proteins. , 2003, Trends in biochemical sciences.

[24]  C. Schwartz,et al.  Detecting polymorphisms and mutations in candidate genes. , 2002, American journal of human genetics.

[25]  M. Hayden,et al.  Mutant frizzled-4 disrupts retinal angiogenesis in familial exudative vitreoretinopathy , 2002, Nature Genetics.

[26]  Ivan Lobov,et al.  Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor , 2002, The Journal of cell biology.

[27]  J. Nathans,et al.  Progressive Cerebellar, Auditory, and Esophageal Dysfunction Caused by Targeted Disruption of thefrizzled-4 Gene , 2001, The Journal of Neuroscience.

[28]  T J Keen,et al.  A new locus for autosomal dominant familial exudative vitreoretinopathy maps to chromosome 11p12-13. , 2001, American journal of human genetics.

[29]  A. Fielder,et al.  A mutation in the Norrie disease gene (NDP) associated with X–linked familial exudative vitreoretinopathy , 1993, Nature genetics.

[30]  S. Henikoff,et al.  Amino acid substitution matrices from protein blocks. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[31]  J. Norris,et al.  Autosomal dominant exudative vitreoretinopathy. , 1983, Archives of ophthalmology.

[32]  A. E. Wakil TOWARDS AN INTEGRATED VIEW OF Wnt SIGNALING IN MOUSE ADRENOCORTICAL FUNCTIONAL ZONATION , 2012 .

[33]  H. Ropers,et al.  An animal model for Norrie disease (ND): gene targeting of the mouse ND gene. , 1996, Human molecular genetics.