Partial Noether operators and first integrals via partial Lagrangians
暂无分享,去创建一个
[1] Fazal M. Mahomed,et al. Noether-Type Symmetries and Conservation Laws Via Partial Lagrangians , 2006 .
[2] G. Bluman,et al. Erratum: Integrating factors and first integrals for ordinary differential equations , 1999, European Journal of Applied Mathematics.
[3] Frans Cantrijn,et al. GENERALIZATIONS OF NOETHER'S THEOREM IN CLASSICAL MECHANICS* , 1981 .
[4] N. Ibragimov. Transformation groups applied to mathematical physics , 1984 .
[5] P. Olver. Applications of Lie Groups to Differential Equations , 1986 .
[6] P. Leach. First integrals for the modified Emden equation q̈+α(t) q̇+qn =0 , 1985 .
[7] H. Steudel. Über die Zuordnung zwischen lnvarianzeigenschaften und Erhaltungssätzen , 1962 .
[8] Geoff Prince,et al. Symmetries of the time-dependent N-dimensional oscillator , 1980 .
[9] Sergio A. Hojman,et al. On the inverse problem of the calculus of variations , 1981 .
[10] E. Bessel-Hagen. Über die Erhaltungssätze der Elektrodynamik , 1921 .
[11] A. Kara,et al. Lie–Bäcklund and Noether Symmetries with Applications , 1998 .
[12] Fazal M. Mahomed,et al. Lie and Noether Counting Theorems for One-Dimensional Systems , 1993 .
[13] P. Leach. The first integrals and orbit equation for the Kepler problem with drag , 1987 .
[14] F. Mahomed,et al. NOETHER SYMMETRIES OF Y' = F(X)YN WITH APPLICATIONS TO NON-STATIC SPHERICALLY SYMMETRIC PERFECT FLUID SOLUTIONS , 1999 .
[15] P. Leach. Applications of the Lie theory of extended groups in Hamiltonian mechanics: the oscillator and the Kepler problem , 1981, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.
[16] T. Duchamp,et al. Variational principles for second-order quasi-linear scalar equations , 1984 .
[17] Jesse Douglas. Solution of the inverse problem of the calculus of variations , 1941 .
[18] M. Lutzky. Symmetry groups and conserved quantities for the harmonic oscillator , 1978 .
[19] Jarmo Hietarinta,et al. Direct methods for the search of the second invariant , 1987 .
[20] Symmetry Properties of Autonomous Integrating Factors , 2005, nlin/0512012.
[21] W. Sarlet,et al. First integrals versus configurational invariants and a weak form of complete integrability , 1985 .
[22] H. Lewis,et al. A direct approach to finding exact invariants for one‐dimensional time‐dependent classical Hamiltonians , 1982 .
[23] W. Miller,et al. Group analysis of differential equations , 1982 .
[24] Jean-Marc Lévy-Leblond,et al. Conservation Laws for Gauge-Variant Lagrangians in Classical Mechanics , 1971 .
[25] Fazal M. Mahomed,et al. Relationship between Symmetries andConservation Laws , 2000 .