Expression and biochemical properties of a protein serine/threonine phosphatase encoded by bacteriophage lambda.

The predicted amino acid sequence encoded by the open reading frame 221 (orf221) of bacteriophage lambda exhibited a high degree of similarity to the catalytic subunits of a variety of protein serine/threonine phosphatases belonging to PP1, PP2A, and PP2B groups. Cloning and expression of the orf221 gene in Escherichia coli provided direct evidence that the gene codes for a protein serine/threonine phosphatase. The single-subunit recombinant enzyme was purified in soluble form and shown to possess a unique repertoire of biochemical properties--e.g., an absolute requirement for Mn2+, resistance to okadaic acid, inhibitors 1 and 2, and ability to dephosphorylate casein, adenovirus E1A proteins, and the alpha subunit of phosphorylase kinase. No phosphotyrosine phosphatase activity was observed. Mutational and biochemical analyses identified the conserved residues 73-77 and Cys138 to be important for activity. The name PP-lambda is proposed for this unusual prokaryotic enzyme.