Dynanfic Classifiers: Genetic Programnfing and Classifier Systems

The Dynamic Classifier System extends the traditional classifier system by replacing its fixed-width ternary representation with Lisp expressions. Genetic programming applied to the classifiers allows the system to discover building blocks in a fle~ble, fitness directed manner. In this paper, I describe the prior art of problem decomposition using genetic programming and classifier systems. I then show how the proposed system builds oil work in these two areas, extending them in a way that provides for flexible representation and fitness directed discovery of useful building blocks.

[1]  Richard S. Sutton,et al.  Temporal credit assignment in reinforcement learning , 1984 .

[2]  Peter J. Angeline,et al.  Evolutionary Module Acquisition , 1993 .

[3]  Stewart W. Wilson Hierarchical Credit Allocation in a Classifier System , 1987, IJCAI.

[4]  Daniele Montanari,et al.  Learning and bucket brigade dynamics in classifier systems , 1990 .

[5]  Gerald Tesauro,et al.  Practical Issues in Temporal Difference Learning , 1992, Mach. Learn..

[6]  J. K. Kinnear,et al.  Advances in Genetic Programming , 1994 .

[7]  John R. Koza,et al.  Scalable learning in genetic programming using automatic function definition , 1994 .

[8]  Arthur L. Samuel,et al.  Some Studies in Machine Learning Using the Game of Checkers , 1967, IBM J. Res. Dev..

[9]  Stewart W. Wilson ZCS: A Zeroth Level Classifier System , 1994, Evolutionary Computation.

[10]  Peter J. Angeline,et al.  Genetic programming and emergent intelligence , 1994 .

[11]  Jonathan Schaeffer,et al.  HCS: Adding Hierarchies to Classifier Systems , 1991, ICGA.

[12]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[13]  Stewart W. Wilson Classifier Fitness Based on Accuracy , 1995, Evolutionary Computation.

[14]  J. K. Kinnear,et al.  Alternatives in automatic function definition: a comparison of performance , 1994 .

[15]  Stewart W. Wilson The animat path to AI , 1991 .

[16]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[17]  John H. Holland,et al.  Induction: Processes of Inference, Learning, and Discovery , 1987, IEEE Expert.

[18]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[19]  Ben J. A. Kröse,et al.  Learning from delayed rewards , 1995, Robotics Auton. Syst..

[20]  G. Tesauro Practical Issues in Temporal Difference Learning , 1992 .

[21]  David E. Goldberg,et al.  A Critical Review of Classifier Systems , 1989, ICGA.