Optimal order yielding discrepancy principle for simplified regularization in Hilbert scales: finite-dimensional realizations

Simplified regularization using finite-dimensional approximations in the setting of Hilbert scales has been considered for obtaining stable approximate solutions to ill-posed operator equations. The derived error estimates using an a priori and a posteriori choice of parameters in relation to the noise level are shown to be of optimal order with respect to certain natural assumptions on the ill posedness of the equation. The results are shown to be applicable to a wide class of spline approximations in the setting of Sobolev scales.

[1]  M. T. Nair Optimal order results for a class of regularization methods using unbounded operators , 2002 .

[2]  Bernard A. Mair,et al.  Tikhonov regularization for finitely and infinitely smoothing operators , 1994 .

[3]  Yu. I. Petunin,et al.  SCALES OF BANACH SPACES , 1966 .

[4]  C. W. Groetsch,et al.  The theory of Tikhonov regularization for Fredholm equations of the first kind , 1984 .

[5]  M. T. Nair,et al.  An optimal order yielding discrepancy principle for simplified regularization of ill-posed problems in Hilbert scales , 2003 .

[6]  Santhosh George,et al.  Error bounds and parameter choice strategies for simplified regularization in Hilbert scales , 1997 .

[7]  Charles A. Micchelli,et al.  A Survey of Optimal Recovery , 1977 .

[8]  Markus Hegland,et al.  The trade-off between regularity and stability in Tikhonov regularization , 1997, Math. Comput..

[9]  M. T. Nair On Morozov’s Method for Tikhonov Regularization as an Optimal Order Yielding Algorithm , 1999 .

[10]  Andreas Neubauer,et al.  An a Posteriori Parameter Choice for Tikhonov Regularization in Hilbert Scales Leading to Optimal Convergence Rates , 1988 .

[11]  A. Kirsch An Introduction to the Mathematical Theory of Inverse Problems , 1996, Applied Mathematical Sciences.

[12]  Andreas Neubauer,et al.  Convergence rates for Tikhonov regularization in finite-dimensional subspaces of Hilbert scales , 1988 .

[13]  F. Natterer Error bounds for tikhonov regularization in hilbert scales , 1984 .

[14]  Markus Hegland,et al.  An optimal order regularization method which does not use additional smoothness assumptions , 1992 .

[15]  U. Tautenhahn,et al.  Error estimates for Tikhonov regularization in Hilbert scales , 1994 .

[16]  A. Aziz The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations , 1972 .

[17]  Gennadi Vainikko,et al.  On the Optimality of Methods for Ill-Posed Problems , 1987 .

[18]  E. Schock,et al.  Ritz-Regularization versus Least-Square-Regularization. Solution Methods for Integral Equations of the First Kind , 1985 .

[19]  C. Micchelli,et al.  Optimal Estimation of Linear Operators in Hilbert Spaces from Inaccurate Data , 1979 .

[20]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .