Auger recombination in narrow-gap semiconductor superlattices incorporating antimony

A comparison is performed between measured and calculated Auger recombination rates for four different narrow-gap superlattices based on the InAs/GaSb/AlSb material system. The structures are designed for optical or electrical injection for mid-infrared laser applications, with wavelengths ranging from 3.4 to 4.1 μm. The electronic band structures are computed employing an accurate 14-band restricted basis set (superlattice K⋅p) methodology that utilizes experimental information about the low-energy electronic structure of the bulk constituents. The superlattice band structures and their associated matrix elements are directly employed to compute Auger recombination rates. Varying amounts of Auger recombination suppression are displayed by the various superlattices as compared to bulk mid-infrared systems. The greatest disagreement between theory and experiment is shown for the structure predicted to have the most Auger suppression, suggesting the suppression is sensitive either to theoretical or growth u...

[1]  Michael S. Shur,et al.  LASERS, OPTICS, AND OPTOELECTRONICS 1683 Effect of interface structure on the optical properties of InAs'GaSb laser active regions , 2002 .

[2]  C. Yu,et al.  Interface contributions to spin relaxation in a short-period InAs/GaSb superlattice , 2001 .

[3]  C. Grein,et al.  Mid-infrared InAs/GaInSb separate confinement heterostructure laser diode structures , 2001 .

[4]  C. Yu,et al.  Molecular beam epitaxy growth and characterization of broken-gap (type II) superlattices and quantum wells for midwave-infrared laser diodes , 2000 .

[5]  Jonathon T. Olesberg,et al.  Differential gain, differential index, and linewidth enhancement factor for a 4 μm superlattice laser active layer , 1999 .

[6]  Christopher L. Felix,et al.  High-temperature continuous-wave 3–6.1 μm “W” lasers with diamond-pressure-bond heat sinking , 1999 .

[7]  Jonathon T. Olesberg,et al.  Carrier recombination rates in narrow-gap InAs/Ga 1-x In x Sb-based superlattices , 1999 .

[8]  T. F. Boggess,et al.  Optimization of active regions in midinfrared lasers , 1999 .

[9]  Gregory H. Olsen,et al.  Above-room-temperature optically pumped midinfrared W lasers , 1998 .

[10]  Christopher L. Felix,et al.  Auger coefficients in type-II InAs/Ga1−xInxSb quantum wells , 1998 .

[11]  Jonathon T. Olesberg,et al.  Experimental and theoretical density-dependent absorption spectra in (GaInSb/InAs)/AlGaSb superlattice multiple quantum wells , 1998 .

[12]  C. Grein,et al.  Auger optimization in mid-infrared lasers: the importance of final-state optimization. , 1998, Optics express.

[13]  Jonathon T. Olesberg,et al.  Theoretical performance of mid-infrared broken-gap multilayer superlattice lasers , 1997 .

[14]  Jonathon T. Olesberg,et al.  Hot carrier dynamics in a (GaInSb/InAs)/GaInAlAsSb superlattice multiple quantum well measured with mid-wave infrared, subpicosecond photoluminescence upconversion , 1997 .

[15]  W. E. Tennant,et al.  HgCdTe– an Unexpectedly Good Choice for (Near) Room Temperature Focal Plane Arrays , 1997 .

[16]  Carl R. Pidgeon,et al.  Suppression of Auger recombination in arsenic‐rich InAs1−xSbx strained layer superlattices , 1996 .

[17]  Carrier recombination dynamics in a (GaInSb/InAs)/AlGaSb superlattice multiple quantum well , 1996 .

[18]  H. Ehrenreich,et al.  Long wavelength InAs/InGaSb infrared detectors: Optimization of carrier lifetimes , 1995 .

[19]  Christoph H. Grein,et al.  Theoretical performance limits of 2.1–4.1 μm InAs/InGaSb, HgCdTe, and InGaAsSb lasers , 1995 .

[20]  Jerry R. Meyer,et al.  AUGER LIFETIME ENHANCEMENT IN INAS-GA1-XINXSB SUPERLATTICES , 1994 .

[21]  Christoph H. Grein,et al.  Temperature limits on infrared detectivities of InAs/InxGa1−xSb superlattices and bulk HgxCd1−xTe , 1993 .

[22]  Christoph H. Grein,et al.  Minority carrier lifetimes in ideal InGaSb/InAs superlattices , 1992 .

[23]  O. Madelung Semiconductors : group IV elements and III-V compounds , 1991 .

[24]  Eli Yablonovitch,et al.  Reduction of lasing threshold current density by the lowering of valence band effective mass , 1986 .

[25]  A. R. Adams,et al.  Band-structure engineering for low-threshold high-efficiency semiconductor lasers , 1986 .

[26]  R. Abram,et al.  Calculations of the commonly neglected terms in the matrix element for Auger and impact ionisation processes in semiconductors , 1984 .

[27]  P. T. Landsberg,et al.  Auger effect in semiconductors , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.