Auger recombination in narrow-gap semiconductor superlattices incorporating antimony
暂无分享,去创建一个
T. F. Boggess | C. Grein | M. Flatté | L. Zhang | J. Olesberg | S. A. Anson | T. Boggess
[1] Michael S. Shur,et al. LASERS, OPTICS, AND OPTOELECTRONICS 1683 Effect of interface structure on the optical properties of InAs'GaSb laser active regions , 2002 .
[2] C. Yu,et al. Interface contributions to spin relaxation in a short-period InAs/GaSb superlattice , 2001 .
[3] C. Grein,et al. Mid-infrared InAs/GaInSb separate confinement heterostructure laser diode structures , 2001 .
[4] C. Yu,et al. Molecular beam epitaxy growth and characterization of broken-gap (type II) superlattices and quantum wells for midwave-infrared laser diodes , 2000 .
[5] Jonathon T. Olesberg,et al. Differential gain, differential index, and linewidth enhancement factor for a 4 μm superlattice laser active layer , 1999 .
[6] Christopher L. Felix,et al. High-temperature continuous-wave 3–6.1 μm “W” lasers with diamond-pressure-bond heat sinking , 1999 .
[7] Jonathon T. Olesberg,et al. Carrier recombination rates in narrow-gap InAs/Ga 1-x In x Sb-based superlattices , 1999 .
[8] T. F. Boggess,et al. Optimization of active regions in midinfrared lasers , 1999 .
[9] Gregory H. Olsen,et al. Above-room-temperature optically pumped midinfrared W lasers , 1998 .
[10] Christopher L. Felix,et al. Auger coefficients in type-II InAs/Ga1−xInxSb quantum wells , 1998 .
[11] Jonathon T. Olesberg,et al. Experimental and theoretical density-dependent absorption spectra in (GaInSb/InAs)/AlGaSb superlattice multiple quantum wells , 1998 .
[12] C. Grein,et al. Auger optimization in mid-infrared lasers: the importance of final-state optimization. , 1998, Optics express.
[13] Jonathon T. Olesberg,et al. Theoretical performance of mid-infrared broken-gap multilayer superlattice lasers , 1997 .
[14] Jonathon T. Olesberg,et al. Hot carrier dynamics in a (GaInSb/InAs)/GaInAlAsSb superlattice multiple quantum well measured with mid-wave infrared, subpicosecond photoluminescence upconversion , 1997 .
[15] W. E. Tennant,et al. HgCdTe– an Unexpectedly Good Choice for (Near) Room Temperature Focal Plane Arrays , 1997 .
[16] Carl R. Pidgeon,et al. Suppression of Auger recombination in arsenic‐rich InAs1−xSbx strained layer superlattices , 1996 .
[17] Carrier recombination dynamics in a (GaInSb/InAs)/AlGaSb superlattice multiple quantum well , 1996 .
[18] H. Ehrenreich,et al. Long wavelength InAs/InGaSb infrared detectors: Optimization of carrier lifetimes , 1995 .
[19] Christoph H. Grein,et al. Theoretical performance limits of 2.1–4.1 μm InAs/InGaSb, HgCdTe, and InGaAsSb lasers , 1995 .
[20] Jerry R. Meyer,et al. AUGER LIFETIME ENHANCEMENT IN INAS-GA1-XINXSB SUPERLATTICES , 1994 .
[21] Christoph H. Grein,et al. Temperature limits on infrared detectivities of InAs/InxGa1−xSb superlattices and bulk HgxCd1−xTe , 1993 .
[22] Christoph H. Grein,et al. Minority carrier lifetimes in ideal InGaSb/InAs superlattices , 1992 .
[23] O. Madelung. Semiconductors : group IV elements and III-V compounds , 1991 .
[24] Eli Yablonovitch,et al. Reduction of lasing threshold current density by the lowering of valence band effective mass , 1986 .
[25] A. R. Adams,et al. Band-structure engineering for low-threshold high-efficiency semiconductor lasers , 1986 .
[26] R. Abram,et al. Calculations of the commonly neglected terms in the matrix element for Auger and impact ionisation processes in semiconductors , 1984 .
[27] P. T. Landsberg,et al. Auger effect in semiconductors , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.