Analyzing social media data: A mixed-methods framework combining computational and qualitative text analysis

[1]  Cecile Paris,et al.  What and With Whom? Identifying Topics in Twitter Through Both Interactions and Text , 2020, IEEE Transactions on Services Computing.

[2]  Deen Freelon,et al.  How Black Twitter and other social media communities interact with mainstream news , 2018 .

[3]  Tammy Chang,et al.  Augmenting Qualitative Text Analysis with Natural Language Processing: Methodological Study , 2018, Journal of medical Internet research.

[4]  S. Ernala,et al.  Analyzing Ideological Discourse on Social Media: A Case Study of the Abortion Debate , 2017 .

[5]  Todd P. Newman Tracking the release of IPCC AR5 on Twitter: Users, comments, and sources following the release of the Working Group I Summary for Policymakers , 2017, Public understanding of science.

[6]  G. Veltri,et al.  Climate change on Twitter: Content, media ecology and information sharing behaviour , 2017, Public understanding of science.

[7]  Brad McKenna,et al.  Social media in qualitative research: Challenges and recommendations , 2017, Inf. Organ..

[8]  E. Weber,et al.  When do extreme weather events generate attention to climate change? , 2017, Climatic Change.

[9]  Mike S. Schäfer,et al.  Global warming’s five Germanys: A typology of Germans’ views on climate change and patterns of media use and information , 2017, Public understanding of science.

[10]  Kim Holmberg,et al.  Integrating and differentiating meanings in tweeting about the fifth Intergovernmental Panel on Climate Change (IPCC) report , 2016, First Monday.

[11]  Craig MacDonald,et al.  Using Word Embedding to Evaluate the Coherence of Topics from Twitter Data , 2016, SIGIR.

[12]  Craig MacDonald,et al.  Topics in Tweets: A User Study of Topic Coherence Metrics for Twitter Data , 2016, ECIR.

[13]  Cécile Paris,et al.  Exploring Emotions in Social Media , 2015, 2015 IEEE Conference on Collaboration and Internet Computing (CIC).

[14]  Jian Yang,et al.  Matrix Inter-joint Factorization - A New Approach for Topic Derivation in Twitter , 2015, 2015 IEEE International Congress on Big Data.

[15]  S. M. Jang,et al.  Polarized frames on ''climate change'' and ''global warming'' across countries and states: Evidence from Twitter big data , 2015 .

[16]  Hywel T. P. Williams,et al.  Network analysis reveals open forums and echo chambers in social media discussions of climate change , 2015 .

[17]  Luke C. Collins,et al.  Examining User Comments for Deliberative Democracy: A Corpus-driven Analysis of the Climate Change Debate Online , 2015, Climate Change Communication and the Internet.

[18]  Hywel T. P. Williams,et al.  Dominant frames in legacy and social media coverage of the IPCC Fifth Assessment Report , 2015 .

[19]  Okyay Kaynak,et al.  Big Data for Modern Industry: Challenges and Trends [Point of View] , 2015, Proc. IEEE.

[20]  Vijay V. Raghavan,et al.  Big Data: Promises and Problems , 2015, Computer.

[21]  W. Pearce Scientific Data and Its Limits: Rethinking the Use of Evidence in Local Climate Change Policy. , 2014 .

[22]  A. Kirilenko,et al.  Public microblogging on climate change: One year of Twitter worldwide , 2014 .

[23]  Matthew R. Auer,et al.  The potential of microblogs for the study of public perceptions of climate change , 2014 .

[24]  K. Holmberg,et al.  Climate Change on Twitter: Topics, Communities and Conversations about the 2013 IPCC Working Group 1 Report , 2014, PloS one.

[25]  Petra Saskia Bayerl,et al.  Social media and the police: tweeting practices of british police forces during the August 2011 riots , 2013, CHI.

[26]  R. Procter,et al.  Reading the riots on Twitter: methodological innovation for the analysis of big data , 2013 .

[27]  Alfred Hermida,et al.  Content Analysis in an Era of Big Data: A Hybrid Approach to Computational and Manual Methods , 2013 .

[28]  D. Boyd,et al.  CRITICAL QUESTIONS FOR BIG DATA , 2012 .

[29]  Jie Yin,et al.  Emergency situation awareness from twitter for crisis management , 2012, WWW.

[30]  Owen Rambow,et al.  Sentiment Analysis of Twitter Data , 2011 .

[31]  J. Hendler,et al.  Semantic Web for the Working Ontologist: Effective Modeling in RDFS and OWL , 2011 .

[32]  B. Weinberg,et al.  Social spending: Managing the social media mix , 2011 .

[33]  Bruno S. Silvestre,et al.  Social Media? Get Serious! Understanding the Functional Building Blocks of Social Media , 2011 .

[34]  Robert O. Schneider Climate change: an emergency management perspective , 2011 .

[35]  Danah Boyd,et al.  I tweet honestly, I tweet passionately: Twitter users, context collapse, and the imagined audience , 2011, New Media Soc..

[36]  Wiebke Wagner,et al.  Steven Bird, Ewan Klein and Edward Loper: Natural Language Processing with Python, Analyzing Text with the Natural Language Toolkit , 2010, Lang. Resour. Evaluation.

[37]  Cynthia A. Lietz,et al.  Evaluating Qualitative Research for Social Work Practitioners , 2010 .

[38]  Timothy Baldwin,et al.  Automatic Evaluation of Topic Coherence , 2010, NAACL.

[39]  Susan T. Dumais,et al.  Characterizing Microblogs with Topic Models , 2010, ICWSM.

[40]  Teresa Correa,et al.  Who interacts on the Web?: The intersection of users' personality and social media use , 2010, Comput. Hum. Behav..

[41]  Jing Jiang,et al.  TwitterRank: finding topic-sensitive influential twitterers , 2010, WSDM '10.

[42]  Robert Hoppe,et al.  Scientific advice and public policy: expert advisers’ and policymakers’ discourses on boundary work , 2008, Poiesis Prax..

[43]  Thomas Keays,et al.  Semantic Web for the Working Ontologist , 2008 .

[44]  N. Leech,et al.  Validity and Qualitative Research: An Oxymoron? , 2007 .

[45]  Nicholas Frank Pidgeon,et al.  Public Views on Climate Change: European and USA Perspectives , 2006 .

[46]  Eleni Stroulia,et al.  Latent Dirichlet Allocation , 2003, The Art and Science of Analyzing Software Data.

[47]  Thomas Hofmann,et al.  Probabilistic Latent Semantic Indexing , 1999, SIGIR Forum.

[48]  Barbara J. Grosz,et al.  Natural-Language Processing , 1982, Artif. Intell..

[49]  Dimitrios A. Pantazis,et al.  Reactivity , 2020, Encyclopedia of Personality and Individual Differences.

[50]  David Johnston,et al.  Disaster Prevention and Management : An International Journal A bottom-up approach to developing a neighbourhood-based resilience measurement framework , 2018 .

[51]  Svitlana Volkova,et al.  Understanding Social Media's Take on Climate Change through Large-Scale Analysis of Targeted Opinions and Emotions , 2017, AAAI Spring Symposia.

[52]  Jian Yang,et al.  Using time-sensitive interactions to improve topic derivation in twitter , 2016, World Wide Web.

[53]  Margaret E. Roberts,et al.  TopicCheck: Interactive Alignment for Assessing Topic Model Stability , 2015, NAACL.

[54]  Jason Chuang,et al.  Computer-Assisted Content Analysis: Topic Models for Exploring Multiple Subjective Interpretations , 2014 .

[55]  Alice E. Marwick Ethnographic and Qualitative Research on Twitter , 2013 .

[56]  Chris Barker,et al.  Varieties of qualitative research: A pragmatic approach to selecting methods , 2012 .

[57]  Craig M. Parker,et al.  Can Qualitative Content Analysis be Adapted for use by Social Informaticians to Study Social Media Discourse? A Position Paper , 2011, ACIS.

[58]  Patrick Paroubek,et al.  Twitter as a Corpus for Sentiment Analysis and Opinion Mining , 2010, LREC.

[59]  Susan C. Herring,et al.  Web Content Analysis: Expanding the Paradigm , 2009 .

[60]  S. Brinkmann,et al.  The Sage encyclopedia of qualitative research methods , 2008 .

[61]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.