Variation of the equilibrium energy and the S-property of stationary compact sets

This paper studies a variation of the equilibrium energy for a certain fairly general functional which appears naturally in the solution of many rational approximation problems of multi-valued analytic functions. The main result of this work states that for the energy functional under consideration and a certain class of admissible compact sets, related to the function to be approximated, the corresponding stationary compact set is fully characterized by the so-called S-property. Bibliography: 38 titles.

[1]  V. Dubinin Some properties of the reduced inner modulus , 1994 .

[2]  Herbert Stahl,et al.  The convergence of Padé approximants to functions with branch points , 1997 .

[3]  E. Rakhmanov,et al.  On asymptotic behavior of Heine-Stieltjes and Van Vleck polynomials , 2009, 0903.2614.

[4]  E. Rakhmanov,et al.  Padé-Chebyshev approximants of multivalued analytic functions, variation of equilibrium energy, and the -property of stationary compact sets , 2010, 1012.0170.

[5]  Menahem Schiffer,et al.  Hadamard's Formula and Variation of Domain-Functions , 1946 .

[6]  G. Kuz’mina Gennadii Mikhailovich Goluzin and geometric function theory , 2007 .

[7]  A. Aptekarev,et al.  Random matrices with external source and the asymptotic behaviour of multiple orthogonal polynomials , 2011 .

[8]  Herbert Stahl,et al.  The structure of extremal domains associated with an analytic function , 1985 .

[9]  E. Rakhmanov,et al.  Critical Measures, Quadratic Differentials, and Weak Limits of Zeros of Stieltjes Polynomials , 2009, 0902.0193.

[10]  W. Van Assche,et al.  Asymptotics of Hermite–Padé Rational Approximants for Two Analytic Functions with Separated Pairs of Branch Points (Case of Genus 0) , 2007, 0708.0946.

[11]  Herbert Stahl,et al.  Orthogonal polynomials with complex-valued weight function, II , 1986 .

[12]  E. Rakhmanov,et al.  EQUILIBRIUM DISTRIBUTIONS AND DEGREE OF RATIONAL APPROXIMATION OF ANALYTIC FUNCTIONS , 1989 .

[13]  M. Vuorinen,et al.  Teichmüller's extremal ring problem , 2006 .

[14]  Александр Иванович Аптекарев,et al.  Случайные матрицы с внешним источником и асимптотика совместно ортогональных многочленов@@@Random matrices with external source and the asymptotic behaviour of multiple orthogonal polynomials , 2011 .

[15]  Comment on the article "Existence and Regularity for an Energy Maximization Problem in Two Dimensi , 2009, 0907.5572.

[16]  A. Aptekarev,et al.  Asymptotics of Hermite-Padé approximants for two functions with branch points , 2008 .

[17]  P. Garabedian,et al.  Identities in the theory of conformal mapping , 1949 .

[18]  Sergey Pavlovich Suetin,et al.  On the Rate of Convergence of Padé Approximants of Orthogonal Expansions , 1992 .

[19]  Daan Huybrechs,et al.  Asymptotic zero distribution of complex orthogonal polynomials associated with Gaussian quadrature , 2010, J. Approx. Theory.

[20]  Herbert Stahl,et al.  Extremal domains associated with an analytic function I , 1985 .

[21]  Tanja Bergkvist,et al.  On polynomial eigenfunctions for a class of differential operators , 2002 .

[22]  V. Dubinin Symmetrization in the geometric theory of functions of a complex variable , 1994 .

[23]  E. Rakhmanov,et al.  EQUILIBRIUM MEASURE AND THE DISTRIBUTION OF ZEROS OF EXTREMAL POLYNOMIALS , 1986 .

[24]  Spyridon Kamvissis,et al.  Existence and Regularity for an Energy Maximization Problem in Two Dimensions , 2005 .

[25]  G. V. Kuzʹmina Moduli of families of curves and quadratic differentials , 1982 .

[26]  A. Martínez-Finkelshtein,et al.  Method of interior variations and existence of S-compact sets , 2012 .