Dual-functional electrostatic self-assembly nanoparticles enable suppressed defects and improved charge transport in perovskite optoelectronic devices

[1]  R. Wen,et al.  MXene-Regulated Perovskite Vertical Growth for High-Performance Solar Cells. , 2022, Angewandte Chemie.

[2]  W. Choy,et al.  Surface-reconstruction of NiOx nanocrystals makes a breakthrough in flexible solar cells , 2022, Joule.

[3]  Dewei Zhao,et al.  A universal close-space annealing strategy towards high-quality perovskite absorbers enabling efficient all-perovskite tandem solar cells , 2022, Nature Energy.

[4]  Tao Jiang,et al.  Spray-coating of AgI incorporated metal halide perovskites for high-performance X-ray detection , 2022, Chemical Engineering Journal.

[5]  Fei Wang,et al.  Recent Progress in Ionic Liquids for Stability Engineering of Perovskite Solar Cells , 2022, Small Structures.

[6]  Li Yang,et al.  Functionalized-MXene-nanosheet-doped tin oxide enhances the electrical properties in perovskite solar cells , 2022, Cell Reports Physical Science.

[7]  Jianghu Liang,et al.  Chlorine-Terminated Mxene Quantum Dots for Improving Crystallinity and Moisture Stability in High-Performance Perovskite Solar Cells , 2021, SSRN Electronic Journal.

[8]  Kwang Soo Kim,et al.  Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes , 2021, Nature.

[9]  Hongyue Wang,et al.  Embedding of Ti3 C2 Tx Nanocrystals in MAPbI3 Microwires for Improved Responsivity and Detectivity of Photodetector. , 2021, Small.

[10]  W. Choy,et al.  Tailoring the Interface in FAPbI3 Planar Perovskite Solar Cells by Imidazole‐Graphene‐Quantum‐Dots , 2021, Advanced Functional Materials.

[11]  S. Zakeeruddin,et al.  Modulation of perovskite crystallization processes towards highly efficient and stable perovskite solar cells with MXene quantum dot-modified SnO2 , 2021 .

[12]  M. Kanatzidis,et al.  Inch-sized high-quality perovskite single crystals by suppressing phase segregation for light-powered integrated circuits , 2021, Science Advances.

[13]  Jinsong Huang,et al.  Large-area and efficient perovskite light-emitting diodes via low-temperature blade-coating , 2021, Nature communications.

[14]  Chen Zhao,et al.  Ultrathin Perovskite Monocrystals Boost the Solar Cell Performance , 2020, Advanced Energy Materials.

[15]  Xiaowen Zhou,et al.  Architecturing Lattice-Matched Bismuthene–SnO2 Heterojunction for Effective Perovskite Solar Cells , 2020 .

[16]  Hongwei Song,et al.  Dual Interfacial Modification Engineering with 2D MXene Quantum Dots and Copper Sulphide Nanocrystals Enabled High‐Performance Perovskite Solar Cells , 2020, Advanced Functional Materials.

[17]  Linsheng Huang,et al.  Low-Temperature Growing Anatase TiO2/SnO2 Multi-dimensional Heterojunctions at MXene Conductive Network for High-Efficient Perovskite Solar Cells , 2020, Nano-Micro Letters.

[18]  Jianyu Yuan,et al.  Perovskite Quantum Dot Solar Cells with 15.6% Efficiency and Improved Stability Enabled by an α-CsPbI3/FAPbI3 Bilayer Structure , 2019, ACS Energy Letters.

[19]  D. Rossi,et al.  Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells , 2019, Nature Materials.

[20]  Feng Wu,et al.  Electrostatic Self-assembly of 0D–2D SnO2 Quantum Dots/Ti3C2Tx MXene Hybrids as Anode for Lithium-Ion Batteries , 2019, Nano-micro letters.

[21]  Yiwang Chen,et al.  Incorporation of two electron acceptors to improve the electron mobility and stability of perovskite solar cells , 2019, Journal of Materials Chemistry C.

[22]  G. Fang,et al.  A facile room temperature solution synthesis of SnO2 quantum dots for perovskite solar cells , 2019, Journal of Materials Chemistry A.

[23]  Y. Gogotsi,et al.  SnO2–Ti3C2 MXene electron transport layers for perovskite solar cells , 2019, Journal of Materials Chemistry A.

[24]  Q. Wang,et al.  Ultracompact, Well-Packed Perovskite Flat Crystals: Preparation and Application in Planar Solar Cells with High Efficiency and Humidity Tolerance. , 2019, ACS applied materials & interfaces.

[25]  T. Ma,et al.  High Electrical Conductivity 2D MXene Serves as Additive of Perovskite for Efficient Solar Cells. , 2018, Small.

[26]  G. Fang,et al.  Effective Carrier‐Concentration Tuning of SnO2 Quantum Dot Electron‐Selective Layers for High‐Performance Planar Perovskite Solar Cells , 2018, Advanced materials.

[27]  Edward P. Booker,et al.  Maximizing and stabilizing luminescence from halide perovskites with potassium passivation , 2018, Nature.

[28]  Z. Yin,et al.  Interface Engineering of High-Performance Perovskite Photodetectors Based on PVP/SnO2 Electron Transport Layer. , 2018, ACS applied materials & interfaces.

[29]  A. Jen,et al.  Quantifying Efficiency Loss of Perovskite Solar Cells by a Modified Detailed Balance Model , 2018, 1801.02941.

[30]  Christoph J. Brabec,et al.  A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells , 2017, Science.

[31]  J. Jang,et al.  Size effects of a graphene quantum dot modified-blocking TiO2 layer for efficient planar perovskite solar cells , 2017 .

[32]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[33]  O. Bakr,et al.  Perovskite solar cells: Shedding light on film crystallization. , 2017, Nature materials.

[34]  Wei Chen,et al.  Black Phosphorus Quantum Dots for Hole Extraction of Typical Planar Hybrid Perovskite Solar Cells. , 2017, The journal of physical chemistry letters.

[35]  L. Cinà,et al.  Few‐Layer MoS2 Flakes as Active Buffer Layer for Stable Perovskite Solar Cells , 2016 .

[36]  Sergei Tretiak,et al.  High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells , 2016, Nature.

[37]  Y. Gogotsi,et al.  Highly Conductive Optical Quality Solution‐Processed Films of 2D Titanium Carbide , 2016 .

[38]  X. Tao,et al.  Sn⁴⁺ Ion Decorated Highly Conductive Ti3C2 MXene: Promising Lithium-Ion Anodes with Enhanced Volumetric Capacity and Cyclic Performance. , 2016, ACS nano.

[39]  Edward H. Sargent,et al.  Sensitive, Fast, and Stable Perovskite Photodetectors Exploiting Interface Engineering , 2015 .

[40]  Paul Meredith,et al.  Low Noise, IR‐Blind Organohalide Perovskite Photodiodes for Visible Light Detection and Imaging , 2015, Advanced materials.

[41]  Paul L. Burn,et al.  Electro-optics of perovskite solar cells , 2014, Nature Photonics.

[42]  Yang Yang,et al.  Solution-processed hybrid perovskite photodetectors with high detectivity , 2014, Nature Communications.

[43]  Chang E. Ren,et al.  Flexible and conductive MXene films and nanocomposites with high capacitance , 2014, Proceedings of the National Academy of Sciences.

[44]  Baozhong Liu,et al.  Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. , 2014, Journal of the American Chemical Society.

[45]  He Yan,et al.  Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots. , 2014, Journal of the American Chemical Society.

[46]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[47]  V. Presser,et al.  Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 , 2011, Advanced materials.

[48]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[49]  G. Liao,et al.  Improved Performance and Stability of Perovskite Solar Modules by Interface Modulating with Graphene Oxide Crosslinked CsPbBr3 Quantum Dots , 2021, Energy & Environmental Science.