The experimental plan for cryogenic layered target implosions on the National Ignition Facility--The inertial confinement approach to fusion

Ignition requires precisely controlled, high convergence implosions to assemble a dense shell of deuterium-tritium (DT) fuel with ρR>∼1 g/cm2 surrounding a 10 keV hot spot with ρR ∼ 0.3 g/cm2. A working definition of ignition has been a yield of ∼1 MJ. At this yield the α-particle energy deposited in the fuel would have been ∼200 kJ, which is already ∼10 × more than the kinetic energy of a typical implosion. The National Ignition Campaign includes low yield implosions with dudded fuel layers to study and optimize the hydrodynamic assembly of the fuel in a diagnostics rich environment. The fuel is a mixture of tritium-hydrogen-deuterium (THD) with a density equivalent to DT. The fraction of D can be adjusted to control the neutron yield. Yields of ∼1014−15 14 MeV (primary) neutrons are adequate to diagnose the hot spot as well as the dense fuel properties via down scattering of the primary neutrons. X-ray imaging diagnostics can function in this low yield environment providing additional information about ...

L. J. Atherton | J. D. Kilkenny | D. K. Bradley | Paul T. Springer | Ramon Joe Leeper | P. W. McKenty | Edward I. Moses | Steven H. Batha | John Lindl | M. J. Edwards | Jeffrey A. Koch | Richard A. Lerche | D. A. Callahan | N. Izumi | Riccardo Betti | Mark D. Wilke | Gary P. Grim | Steven W. Haan | Bruce A. Hammel | O. S. Jones | Michael M. Marinak | S. M. Sepke | James E. Fair | Christian Stoeckl | Otto L. Landen | Johan A. Frenje | Richard D. Petrasso | Brian J. MacGowan | D. H. Edgell | T. R. Boehly | V. Yu. Glebov | D. R. Harding | J. P. Knauer | T. C. Sangster | K. A. Moreno | Abbas Nikroo | Hans W. Herrmann | Wolfgang Stoeffl | Gilbert W. Collins | B. K. Spears | Stephen V. Weber | D. S. Clark | D. H. Munro | S. P. Hatchett | R. Tommasini | A. V. Hamza | G. A. Kyrala | Susan Regan | B. J. Kozioziemski | Siegfried Glenzer | M. J. Moran | E. M. Giraldez | M. L. Hoppe | Evan R. Mapoles | D. H. Schneider | L. A. Bernstein | O. Landen | B. MacGowan | D. Clark | J. Kilkenny | J. Koch | R. Tommasini | L. Atherton | D. Callahan | O. Jones | S. Weber | S. Glenzer | G. Kyrala | A. Nikroo | J. Knauer | J. Frenje | R. Petrasso | R. Betti | M. Marinak | E. Moses | C. Cerjan | A. Hamza | B. Spears | S. Sepke | T. Boehly | D. Harding | P. McKenty | C. Stoeckl | S. Regan | D. Munro | S. Haan | V. Glebov | E. Giraldez | N. Izumi | S. Hatchett | D. Wilson | R. Leeper | D. Edgell | J. Lindl | D. Bradley | A. Mackinnon | P. Springer | B. Hammel | K. Moreno | G. Grim | L. Bernstein | D. Bleuel | J. Fair | E. Mapoles | M. Moran | W. Stoeffl | M. Edwards | B. Kozioziemski | S. Batha | H. Herrmann | K. C. Chen | Charles Cerjan | A. J. Mackinnon | D. Schneider | Gilbert Collins | D. C. Wilson | D. Shaughnessy | M. Hoppe | R. Lerche | M. Wilke | D. L. Bleuel | R. J. Fortner | M. Mauldin | D. Shaughnessy | H. Huang | M. Mauldin | B. Jacoby | N. Hein | R. Fortner | B. Jacoby | N. Hein | H. Huang | T. Sangster | K. C. Chen

[1]  J. A. Frenje,et al.  First measurements of the absolute neutron spectrum using the magnetic recoil spectrometer at OMEGA (invited). , 2008, The Review of scientific instruments.

[2]  Jochen Schein,et al.  X-ray conversion efficiency of high-Z hohlraum wall materials for indirect drive ignition , 2008 .

[3]  Jay D. Salmonson,et al.  Simulations of high-mode Rayleigh-Taylor growth in NIF ignition capsules , 2007 .

[4]  Jay D. Salmonson,et al.  Plastic ablator ignition capsule design for the National Ignition Facility , 2010 .

[5]  J. D. Moody,et al.  Cryogenic DT and D2 targets for inertial confinement fusiona) , 2006 .

[6]  T. C. Sangster,et al.  Tests and calibration of NIF neutron time of flight detectors. , 2008, The Review of scientific instruments.

[7]  J. Lindl Development of the indirect‐drive approach to inertial confinement fusion and the target physics basis for ignition and gain , 1995 .

[8]  L J Atherton Targets for the National Ignition Campaign , 2007 .

[9]  L. J. Atherton,et al.  Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility , 2010 .

[10]  H. Brysk,et al.  Fusion neutron energies and spectra , 1973 .

[11]  Steven W. Haan,et al.  Three-dimensional HYDRA simulations of National Ignition Facility targets , 2001 .

[12]  Jay D. Salmonson,et al.  Prediction of ignition implosion performance using measurements of Low-deuterium surrogates , 2010 .

[13]  Ramon Joe Leeper,et al.  Probing high areal-density cryogenic deuterium-tritium implosions using downscattered neutron spectra measured by the magnetic recoil spectrometera) , 2010 .

[14]  M. Houry,et al.  Scattered and (n,2n) neutrons as a measure of areal density in ICF capsules , 2002 .

[15]  J. Meyer-ter-Vehn,et al.  The physics of inertial fusion - Hydrodynamics, dense plasma physics, beam-plasma interaction , 2004 .

[16]  Peter A. Amendt,et al.  Hohlraum Symmetry Experiments with Multiple Beam Cones on the Omega Laser Facility , 1998 .

[17]  C. Sorce,et al.  Development of Compton radiography of inertial confinement fusion implosionsa) , 2011 .

[18]  Experimental Evaluation of Neutron Induced Noise on Gated X-ray Framing Cameras , 2010 .

[19]  J Edwards,et al.  Generalized measurable ignition criterion for inertial confinement fusion. , 2010, Physical review letters.

[20]  Peter M. Celliers,et al.  Capsule implosion optimization during the indirect-drive National Ignition Campaign , 2010 .

[21]  Edward I. Moses,et al.  Ignition on the National Ignition Facility , 2007 .

[22]  Forrest J. Rogers,et al.  Updated Opal Opacities , 1996 .

[23]  Jay D. Salmonson,et al.  High-mode Rayleigh-Taylor growth in NIF ignition capsules , 2007 .

[24]  Jay D. Salmonson,et al.  Increasing robustness of indirect drive capsule designs against short wavelength hydrodynamic instabilities , 2004 .

[25]  P. Souers,et al.  Hydrogen Properties for Fusion Energy , 1986 .

[26]  Edward I. Moses,et al.  The National Ignition Facility: enabling fusion ignition for the 21st century , 2004 .

[27]  G. Morgan,et al.  Investigations into reconstruction techniques for the National Ignition Facility Neutron Imaging System , 2010 .

[28]  Jason C. Cooley,et al.  Progress toward fabrication of graded doped beryllium and CH capsules for the National Ignition Facilitya) , 2006 .

[29]  J. Koch,et al.  Multispectral imaging of continuum emission for determination of temperature and density profiles inside implosion plasmas , 2004 .

[30]  Roy Kishony,et al.  Ignition condition and gain prediction for perturbed inertial confinement fusion targets , 2001 .

[31]  Reinhart Ceulemans,et al.  Effects of plant canopy structure on light interception and photosynthesis , 1994 .

[32]  David A. Young,et al.  A new global equation of state model for hot, dense matter , 1995 .

[33]  Jay D. Salmonson,et al.  Rev3 Update of Requirements for NIF Ignition Targets , 2009 .

[34]  Z. A. Ali,et al.  ICF gamma-ray reaction history diagnostics , 2010 .

[35]  Riccardo Betti,et al.  A measurable Lawson criterion and hydro-equivalent curves for inertial confinement fusion , 2008 .

[36]  John A. Caird,et al.  An overview of LLNL high-energy short-pulse technology for advanced radiography of laser fusion experiments , 2004 .

[37]  T. Ma,et al.  Development of backlighting sources for a Compton radiography diagnostic of inertial confinement fusion targets (invited). , 2008, The Review of scientific instruments.

[38]  J. Nuckolls,et al.  Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications , 1972, Nature.

[39]  Neal R. Pederson,et al.  Gated x-ray detector for the National Ignition Facility , 2006 .