Cysteine-specific protein multi-functionalization and disulfide bridging using 3-bromo-5-methylene pyrrolones

[1]  Juanjuan Du,et al.  A light-responsive, self-immolative linker for controlled drug delivery via peptide- and protein-drug conjugates , 2019, Chemical science.

[2]  B. Fierz,et al.  “Doubly Orthogonal” Labeling of Peptides and Proteins , 2019, Chem.

[3]  X. Su,et al.  Site-Specific Tagging of Proteins with Paramagnetic Ions for Determination of Protein Structures in Solution and in Cells. , 2019, Accounts of chemical research.

[4]  Emily A. Hoyt,et al.  Contemporary approaches to site-selective protein modification , 2019, Nature Reviews Chemistry.

[5]  Wangjian Sheng,et al.  Dinitroimidazoles as bifunctional bioconjugation reagents for protein functionalization and peptide macrocyclization , 2019, Nature Communications.

[6]  Stephen J. Walsh,et al.  A general approach for the site-selective modification of native proteins, enabling the generation of stable and functional antibody–drug conjugates† †Dedicated to Professor Jack Baldwin on the occasion of his 80th birthday. ‡ ‡Electronic supplementary information (ESI) available. See DOI: 10.1039/c , 2018, Chemical science.

[7]  Alexandra Oudot,et al.  Site-Specific Dual Labeling of Proteins on Cysteine Residues with Chlorotetrazines. , 2018, Angewandte Chemie.

[8]  M. Greenberg,et al.  Synthesis of 5-Methylene-2-pyrrolones. , 2018, Organic Letters.

[9]  Christian Kofoed,et al.  Rational Tuning of Fluorobenzene Probes for Cysteine-Selective Protein Modification. , 2018, Angewandte Chemie.

[10]  Peng Dai,et al.  Palladium Oxidative Addition Complexes for Peptide and Protein Cross-linking. , 2018, Journal of the American Chemical Society.

[11]  B. Pentelute,et al.  Discovery of a 29-Amino-Acid Reactive Abiotic Peptide for Selective Cysteine Arylation. , 2018, ACS chemical biology.

[12]  B. G. Davis,et al.  Post-translational mutagenesis for installation of natural and unnatural amino acid side chains into recombinant proteins , 2017, Nature Protocols.

[13]  T. Ding,et al.  Thio-Michael addition of α,β-unsaturated amides catalyzed by Nmm-based ionic liquids , 2017 .

[14]  Jun Ohata,et al.  A Hexa-rhodium Metallopeptide Catalyst for Site-Specific Functionalization of Natural Antibodies. , 2017, Journal of the American Chemical Society.

[15]  Yonghui Xie,et al.  Thiol Specific and Tracelessly Removable Bioconjugation via Michael Addition to 5-Methylene Pyrrolones. , 2017, Journal of the American Chemical Society.

[16]  Dimpy Kalia,et al.  Stable and Rapid Thiol Bioconjugation by Light-Triggered Thiomaleimide Ring Hydrolysis. , 2017, Angewandte Chemie.

[17]  Z. An,et al.  Antibody-drug conjugates: recent advances in conjugation and linker chemistries , 2016, Protein & Cell.

[18]  Antoine Maruani,et al.  Recent advances in the construction of antibody-drug conjugates. , 2016, Nature chemistry.

[19]  Tao Wang,et al.  Water-soluble allyl sulfones for dual site-specific labelling of proteins and cyclic peptides† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc00005c , 2016, Chemical science.

[20]  Pushpa V. Malekar,et al.  Exocyclic Olefinic Maleimides: Synthesis and Application for Stable and Thiol-Selective Bioconjugation. , 2016, Angewandte Chemie.

[21]  Matthew Welborn,et al.  π-Clamp-mediated cysteine conjugation , 2015, Nature Chemistry.

[22]  Alexander M. Spokoyny,et al.  Organometallic Palladium Reagents for Cysteine Bioconjugation , 2015, Nature.

[23]  Alain Wagner,et al.  Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. , 2015, Chemical Society reviews.

[24]  Enrique Miranda,et al.  A plug-and-play approach to antibody-based therapeutics via a chemoselective dual click strategy , 2015, Nature Communications.

[25]  Antoine Maruani,et al.  A mild TCEP-based para-azidobenzyl cleavage strategy to transform reversible cysteine thiol labelling reagents into irreversible conjugates. , 2015, Chemical communications.

[26]  Gonçalo J L Bernardes,et al.  Advances in chemical protein modification. , 2015, Chemical reviews.

[27]  Louise Robinson,et al.  Long-term stabilization of maleimide-thiol conjugates. , 2015, Bioconjugate chemistry.

[28]  S. Caddick,et al.  Next-generation disulfide stapling: reduction and functional re-bridging all in one , 2015, Chemical science.

[29]  M. Bird,et al.  Bridging disulfides for stable and defined antibody drug conjugates. , 2014, Bioconjugate chemistry.

[30]  S. Brocchini,et al.  A new reagent for stable thiol-specific conjugation. , 2014, Bioconjugate chemistry.

[31]  Alexander M. Spokoyny,et al.  A perfluoroaryl-cysteine S(N)Ar chemistry approach to unprotected peptide stapling. , 2013, Journal of the American Chemical Society.

[32]  T. Weil,et al.  Cross-conjugation of DNA, proteins and peptides via a pH switch , 2013 .

[33]  S. Brocchini,et al.  Comparative binding of disulfide-bridged PEG-Fabs. , 2012, Bioconjugate chemistry.

[34]  S. Caddick,et al.  Polymeric dibromomaleimides as extremely efficient disulfide bridging bioconjugation and pegylation agents. , 2012, Journal of the American Chemical Society.

[35]  S. Gerstberger,et al.  Methods for converting cysteine to dehydroalanine on peptides and proteins , 2011 .

[36]  Mark E. B. Smith,et al.  Bromopyridazinedione-mediated protein and peptide bioconjugation† †Electronic supplementary information (ESI) available: Full experimental details and characterisation. See DOI: 10.1039/c1cc12807h Click here for additional data file. , 2011, Chemical communications.

[37]  B. G. Davis,et al.  A "tag-and-modify" approach to site-selective protein modification. , 2011, Accounts of chemical research.

[38]  James R. Baker,et al.  Protein Modification, Bioconjugation, and Disulfide Bridging Using Bromomaleimides , 2010, Journal of the American Chemical Society.

[39]  B. G. Davis,et al.  Chemical modification of proteins at cysteine: opportunities in chemistry and biology. , 2009, Chemistry, an Asian journal.

[40]  G. Schüürmann,et al.  Kinetic glutathione chemoassay to quantify thiol reactivity of organic electrophiles--application to alpha,beta-unsaturated ketones, acrylates, and propiolates. , 2009, Chemical research in toxicology.

[41]  Paul Polakis,et al.  Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index , 2008, Nature Biotechnology.

[42]  B. Cravatt,et al.  Disparate proteome reactivity profiles of carbon electrophiles. , 2008, Nature chemical biology.

[43]  A. Madder,et al.  Fine-tuning furan toxicity: fast and quantitative DNA interchain cross-link formation upon selective oxidation of a furan containing oligonucleotide. , 2005, Chemical communications.

[44]  P. Jocelyn Chemical reduction of disulfides. , 1987, Methods in enzymology.

[45]  W. D. Brown,et al.  Reduction of protein disulfide bonds by sodium borohydride , 1960 .