Image-Based Multiresolution Topology Optimization Using Deep Disjunctive Normal Shape Model

Abstract We present a machine learning framework for predicting the optimized structural topology designs using multiresolution data. Our approach primarily uses optimized designs from inexpensive coarse mesh finite element simulations for model training and generates high resolution images associated with simulation parameters that are not previously used. Our cost-efficient approach enables the designers to effectively search through possible candidate designs in situations where the design requirements rapidly change. The underlying neural network framework is based on a deep disjunctive normal shape model (DDNSM) which learns the mapping between the simulation parameters and segments of multi resolution images. Using this image-based analysis we provide a practical algorithm which enhances the predictability of the learning machine by determining a limited number of important parametric samples (i.e. samples of the simulation parameters) on which the high resolution training data is generated. We demonstrate our approach on benchmark compliance minimization problems including the 3D topology optimization where we show that the high-fidelity designs from the learning machine are close to optimal designs and can be used as effective initial guesses for the large-scale optimization problem.

[1]  Jie Yuan,et al.  A new three-dimensional topology optimization method based on moving morphable components (MMCs) , 2017 .

[2]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[3]  Vadim Shapiro,et al.  Shape optimization with topological changes and parametric control , 2007 .

[4]  Andres Tovar,et al.  An efficient 3D topology optimization code written in Matlab , 2014 .

[5]  Jesús Martínez-Frutos,et al.  Robust shape optimization of continuous structures via the level set method , 2016 .

[6]  Olaf Steinbach,et al.  Boundary element based multiresolution shape optimisation in electrostatics , 2015, J. Comput. Phys..

[7]  Weihong Zhang,et al.  Sensitivity analysis with the modified Heaviside function for the optimal layout design of multi-component systems , 2012 .

[8]  Hans-Christian Hege,et al.  Tuner: Principled Parameter Finding for Image Segmentation Algorithms Using Visual Response Surface Exploration , 2011, IEEE Transactions on Visualization and Computer Graphics.

[9]  Ahsan Kareem,et al.  Data-driven performance-based topology optimization of uncertain wind-excited tall buildings , 2016 .

[10]  Weihong Zhang,et al.  Simultaneous design of components layout and supporting structures using coupled shape and topology optimization technique , 2008 .

[11]  D. Tortorelli,et al.  Gradient based design optimization under uncertainty via stochastic expansion methods , 2016 .

[12]  Michael I. Jordan,et al.  Machine learning: Trends, perspectives, and prospects , 2015, Science.

[13]  Eduard Gröller,et al.  Run Watchers: Automatic Simulation-Based Decision Support in Flood Management , 2014, IEEE Transactions on Visualization and Computer Graphics.

[14]  Müjdat Çetin,et al.  Disjunctive normal shape models , 2015, 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI).

[15]  O. Sigmund,et al.  Higher‐order multi‐resolution topology optimization using the finite cell method , 2017 .

[16]  Yi Ren,et al.  One-shot generation of near-optimal topology through theory-driven machine learning , 2018, Comput. Aided Des..

[17]  Robert Michael Kirby,et al.  Parametric topology optimization with multiresolution finite element models , 2018, International Journal for Numerical Methods in Engineering.

[18]  Marc Streit,et al.  WeightLifter: Visual Weight Space Exploration for Multi-Criteria Decision Making , 2017, IEEE Transactions on Visualization and Computer Graphics.

[19]  Qui X. Lieu,et al.  Multiresolution topology optimization using isogeometric analysis , 2017 .

[20]  M. Fuge,et al.  Design Manifolds Capture the Intrinsic Complexity and Dimension of Design Spaces , 2017 .

[21]  M. Bendsøe Optimal shape design as a material distribution problem , 1989 .

[22]  Kurt Maute,et al.  Bi-fidelity Stochastic Gradient Descent for Structural Optimization under Uncertainty , 2019 .

[23]  Weihong Zhang,et al.  Topology optimization with closed B-splines and Boolean operations , 2017 .

[24]  G. Allaire,et al.  Shape and topology optimization of the robust compliance via the level set method , 2008 .

[25]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[26]  Daniel Baum,et al.  Automated tracing of microtubules in electron tomograms of plastic embedded samples of Caenorhabditis elegans embryos. , 2012, Journal of structural biology.

[27]  M. Bendsøe,et al.  Material interpolation schemes in topology optimization , 1999 .

[28]  Fuqiang Zhou,et al.  Automated status inspection of fastening bolts on freight trains using a machine vision approach , 2016 .

[29]  Jihong Zhu,et al.  Some Recent Advances in the Integrated Layout Design of Multicomponent Systems , 2011 .

[30]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[31]  M. Bendsøe,et al.  Topology Optimization: "Theory, Methods, And Applications" , 2011 .

[32]  Vivien J. Challis,et al.  High resolution topology optimization using graphics processing units (GPUs) , 2013, Structural and Multidisciplinary Optimization.

[33]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[34]  Ole Sigmund,et al.  On the usefulness of non-gradient approaches in topology optimization , 2011 .

[35]  Daniel A. Tortorelli,et al.  Topology optimization under uncertainty via non-intrusive polynomial chaos expansion , 2017 .

[36]  Haim Waisman,et al.  Failure Mitigation in Optimal Topology Design Using a Coupled Nonlinear Continuum Damage Model , 2014 .

[37]  Jesús Martínez-Frutos,et al.  Large-scale robust topology optimization using multi-GPU systems , 2016 .

[38]  Julián A. Norato,et al.  A geometry projection method for the topology optimization of plate structures , 2016 .

[39]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  Qui X. Lieu,et al.  A multi-resolution approach for multi-material topology optimization based on isogeometric analysis , 2017 .

[41]  Ikjin Lee,et al.  Deep Generative Design: Integration of Topology Optimization and Generative Models , 2019, Journal of Mechanical Design.

[42]  Barak A. Pearlmutter,et al.  Automatic differentiation in machine learning: a survey , 2015, J. Mach. Learn. Res..

[43]  Zsolt Horváth,et al.  Many Plans: Multidimensional Ensembles for Visual Decision Support in Flood Management , 2014, Comput. Graph. Forum.

[44]  T. E. Bruns,et al.  Topology optimization of non-linear elastic structures and compliant mechanisms , 2001 .

[45]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[46]  Jian Zhang,et al.  Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons , 2016 .

[47]  Thomas Schultz,et al.  Open-Box Spectral Clustering: Applications to Medical Image Analysis , 2013, IEEE Transactions on Visualization and Computer Graphics.

[48]  Jesús Martínez-Frutos,et al.  Risk-averse structural topology optimization under random fields using stochastic expansion methods , 2018 .

[49]  Tam H. Nguyen,et al.  A computational paradigm for multiresolution topology optimization (MTOP) , 2010 .

[50]  Jun Hong,et al.  Non-iterative structural topology optimization using deep learning , 2019, Comput. Aided Des..

[51]  Xu Guo,et al.  Explicit layout control in optimal design of structural systems with multiple embedding components , 2015 .

[52]  Julián A. Norato,et al.  Topology optimization with supershapes , 2018, Structural and Multidisciplinary Optimization.

[53]  Paris Perdikaris,et al.  Numerical Gaussian Processes for Time-Dependent and Nonlinear Partial Differential Equations , 2017, SIAM J. Sci. Comput..

[54]  Müjdat Çetin,et al.  Image Segmentation by Deep Learning of Disjunctive Normal Shape Model Shape Representation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[55]  Fehmi Cirak,et al.  Shape optimisation with multiresolution subdivision surfaces and immersed finite elements , 2015, ArXiv.

[56]  Julián A. Norato,et al.  Stress-based topology optimization for continua , 2010 .

[57]  Doris Dransch,et al.  A Visual Analysis Concept for the Validation of Geoscientific Simulation Models , 2012, IEEE Transactions on Visualization and Computer Graphics.

[58]  Y. Kim,et al.  Multi-resolution multi-scale topology optimization — a new paradigm , 2000 .

[59]  G. K. Ananthasuresh,et al.  Optimal Embedding of Rigid Objects in the Topology Design of Structures , 2004 .

[60]  Charlie C. L. Wang,et al.  Current and future trends in topology optimization for additive manufacturing , 2018 .

[61]  Michael Yu Wang,et al.  Engineering feature design for level set based structural optimization , 2013, Comput. Aided Des..

[62]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[63]  Yoshua Bengio,et al.  Convolutional networks for images, speech, and time series , 1998 .

[64]  Anders Clausen,et al.  Efficient topology optimization in MATLAB using 88 lines of code , 2011 .

[65]  Jess Martnez-Frutos,et al.  Efficient topology optimization using GPU computing with multilevel granularity , 2017 .

[66]  Levent Burak Kara,et al.  A data-driven investigation and estimation of optimal topologies under variable loading configurations , 2014, Comput. methods Biomech. Biomed. Eng. Imaging Vis..

[67]  Paris Perdikaris,et al.  Machine learning of linear differential equations using Gaussian processes , 2017, J. Comput. Phys..

[68]  Ertunc Erdil,et al.  Image Segmentation Using Disjunctive Normal Bayesian Shape and Appearance Models , 2018, IEEE Transactions on Medical Imaging.

[69]  Xu Guo,et al.  Doing Topology Optimization Explicitly and Geometrically—A New Moving Morphable Components Based Framework , 2014 .

[70]  Paris Perdikaris,et al.  Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations , 2019, J. Comput. Phys..

[71]  Stefan Bruckner,et al.  Visual Parameter Space Analysis: A Conceptual Framework , 2014, IEEE Transactions on Visualization and Computer Graphics.

[72]  Jian Zhang,et al.  A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model , 2016 .

[73]  James K. Guest,et al.  Achieving minimum length scale in topology optimization using nodal design variables and projection functions , 2004 .

[74]  D. Tortorelli,et al.  A geometry projection method for continuum-based topology optimization with discrete elements , 2015 .

[75]  Glaucio H. Paulino,et al.  Polygonal multiresolution topology optimization (PolyMTOP) for structural dynamics , 2016 .