An effective description of charge diffusion and energy transport in a charged plasma from holography

[1]  Y. Bu,et al.  Holographic Schwinger-Keldysh field theory of SU(2) diffusion , 2022, Journal of High Energy Physics.

[2]  M. Rangamani,et al.  The timbre of Hawking gravitons: an effective description of energy transport from holography , 2022, Journal of High Energy Physics.

[3]  M. Rangamani,et al.  An effective description of momentum diffusion in a charged plasma from holography , 2021, Journal of High Energy Physics.

[4]  Y. Bu,et al.  Ginzburg-Landau effective action for a fluctuating holographic superconductor , 2021, Journal of High Energy Physics.

[5]  Tuna Demircik,et al.  All order effective action for charge diffusion from Schwinger-Keldysh holography , 2020, Journal of High Energy Physics.

[6]  J. K. Ghosh,et al.  Effective field theory of stochastic diffusion from gravity , 2020, Journal of High Energy Physics.

[7]  Bidisha Chakrabarty,et al.  Open effective theory of scalar field in rotating plasma , 2020, Journal of High Energy Physics.

[8]  R. Loganayagam,et al.  Holographic KMS relations at finite density , 2020, 2011.08173.

[9]  R. Loganayagam,et al.  Fermionic Open EFT from Holography , 2020, 2011.07039.

[10]  S. Tahery,et al.  Complexified quasinormal modes and the pole-skipping in a holographic system at finite chemical potential , 2020, Journal of High Energy Physics.

[11]  M. Rangamani,et al.  Open quantum systems and Schwinger-Keldysh holograms , 2020, Journal of High Energy Physics.

[12]  Bidisha Chakrabarty,et al.  Nonlinear Langevin dynamics via holography , 2019, Journal of High Energy Physics.

[13]  M. Crossley,et al.  A prescription for holographic Schwinger-Keldysh contour in non-equilibrium systems , 2018, 1812.08785.

[14]  J. Boer,et al.  Holographic Schwinger-Keldysh effective field theories , 2018, Journal of High Energy Physics.

[15]  M. Rangamani,et al.  Effective action for relativistic hydrodynamics: fluctuations, dissipation, and entropy inflow , 2018, Journal of High Energy Physics.

[16]  M. Rangamani,et al.  Adiabatic hydrodynamics: the eightfold way to dissipation , 2015, 1502.00636.

[17]  M. Spaliński,et al.  On the gravity dual of strongly coupled charged plasma , 2012, 1212.2344.

[18]  Richard Gunstone,et al.  The fluid/gravity correspondence , 2011, 1107.5780.

[19]  B. V. Rees,et al.  Real-time gauge/gravity duality and ingoing boundary conditions , 2009, 0902.4010.

[20]  Kostas Skenderis,et al.  Real-time gauge/gravity duality: prescription, renormalization and examples , 2008, 0812.2909.

[21]  Nabamita Banerjee,et al.  Hydrodynamics from charged black branes , 2008, 0809.2596.

[22]  A. Yarom,et al.  Fluid dynamics of R-charged black holes , 2008, 0809.2488.

[23]  V. Hubeny,et al.  Nonlinear fluid dynamics from gravity , 2007, 0712.2456.

[24]  S. Hartnoll,et al.  Ohm's law at strong coupling: S duality and the cyclotron resonance , 2007, 0706.3228.

[25]  D. Marolf,et al.  Boundary conditions and dualities: vector fields in AdS/CFT , 2006, hep-th/0606113.

[26]  H. Kodama,et al.  Master Equations for Perturbations of Generalised Static Black Holes with Charge in Higher Dimensions , 2003, hep-th/0308128.

[27]  E. Witten SL(2;Z) Action On Three-Dimensional Conformal Field Theories With Abelian Symmetry , 2003, hep-th/0307041.

[28]  H. Kodama,et al.  A Master Equation for Gravitational Perturbations of Maximally Symmetric Black Holes in Higher Dimensions , 2003, hep-th/0305147.

[29]  D. Son,et al.  Schwinger-Keldysh propagators from AdS/CFT correspondence , 2002, hep-th/0212072.

[30]  D.T.Son,et al.  From AdS/CFT correspondence to hydrodynamics. II. Sound waves , 2002, hep-th/0210220.

[31]  D. Son,et al.  From AdS/CFT correspondence to hydrodynamics , 2002 .

[32]  D. Son,et al.  Minkowski-space correlators in AdS/CFT correspondence: recipe and applications , 2002 .

[33]  Kostas Skenderis,et al.  Holographic Reconstruction of Spacetime¶and Renormalization in the AdS/CFT Correspondence , 2000, hep-th/0002230.

[34]  V. Hubeny,et al.  Quasinormal modes of AdS black holes and the approach to thermal equilibrium , 1999, hep-th/9909056.

[35]  Clifford V. Johnson,et al.  Surface terms as counterterms in the AdS-CFT correspondence , 1999, hep-th/9903238.

[36]  D. Marolf,et al.  Boundary Conditions and New Dualities : Vector Fields in AdS / CFT , 2006 .