Generation and robustness of quantum entanglement in spin graphs

Entanglement is a crucial resource for quantum information processing. Protocols to generate high fidelity entangled states on various hardware platforms are in demand. While spin chains have been extensively studied to generate entanglement, graph structures also have such potential. However, only a few classes of graphs have been explored for this specific task. In this paper, we apply a particular coupling scheme involving two different coupling strengths to a graph of two interconnected 2-dimensional hypercubes of $P_3$ such that it effectively contains three defects. We show how this structure allows generation of a Bell state whose fidelity depends on the chosen coupling ratio. We apply partitioned graph theory in order to reduce the dimension of the graph and show that, using a reduced graph or a reduced chain, we can still simulate the same protocol with identical dynamics. We investigate how fabrication errors affect the entanglement generation protocol and how the different equivalent structures are affected, finding that for some specific coupling ratios these are extremely robust.

[1]  Matthias Christandl,et al.  Perfect Transfer of Arbitrary States in Quantum Spin Networks , 2005 .

[2]  B. E. Kane,et al.  Hydrogenic spin quantum computing in silicon: a digital approach. , 2002, Physical review letters.

[3]  William K. Wootters,et al.  Entanglement of formation and concurrence , 2001, Quantum Inf. Comput..

[4]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[5]  C. Mawson,et al.  41 , 2006, The Complete Works of W. R. Bion.

[6]  Christino Tamon,et al.  Perfect state transfer on quotient graphs , 2011, Quantum Inf. Comput..

[7]  T. Spiller,et al.  Effect of perturbations on information transfer in spin chains , 2010, 1007.4746.

[8]  D. Bruß,et al.  Lectures on Quantum Information , 2007 .

[9]  M. L. Wall,et al.  Quantum spin dynamics and entanglement generation with hundreds of trapped ions , 2015, Science.

[10]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[11]  K.J.Resch,et al.  Experimental One-Way Quantum Computing , 2005, quant-ph/0503126.

[12]  Pascual Estarellas,et al.  Spin chain systems for quantum computing and quantum information applications , 2018 .

[13]  T. Spiller,et al.  Robust quantum entanglement generation and generation-plus-storage protocols with spin chains , 2016, 1612.05097.

[14]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[15]  Alastair Kay,et al.  Perfect, Efficent, State Transfer and its Application as a Constructive Tool , 2009, 0903.4274.

[16]  Marta P. Estarellas,et al.  Rapid and robust generation of Einstein-Podolsky-Rosen pairs with spin chains , 2017, Quantum Inf. Comput..

[17]  Matthias Christandl,et al.  Perfect state transfer in quantum spin networks. , 2004, Physical review letters.

[18]  G. Fitzgerald,et al.  'I. , 2019, Australian journal of primary health.

[19]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[20]  David P. DiVincenzo,et al.  Quantum information and computation , 2000, Nature.

[21]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[22]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[24]  Peter W. Shor Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1999 .

[25]  Weinfurter,et al.  Quantum cryptography with entangled photons , 1999, Physical review letters.

[26]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[27]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[28]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[29]  Yasunobu Nakamura,et al.  Quantum computers , 2010, Nature.

[30]  Sougato Bose,et al.  Quantum communication through spin chain dynamics: an introductory overview , 2007, 0802.1224.

[31]  Pedram Khalili Amiri,et al.  Quantum computers , 2003 .

[32]  A. Zeilinger,et al.  Experimental one-way quantum computing , 2005, Nature.

[33]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[34]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[35]  W. Marsden I and J , 2012 .

[36]  V. Saligrama,et al.  Experimental realization of long-distance entanglement between spins in antiferromagnetic quantum spin chains , 2015, Nature Physics.