Theory of quantum path computing with Fourier optics and future applications for quantum supremacy, neural networks and nonlinear Schrödinger equations

[1]  Mario Krenn,et al.  Advances in high-dimensional quantum entanglement , 2019, 1911.10006.

[2]  John C. Platt,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[3]  Jian-Wei Pan,et al.  Boson Sampling with 20 Input Photons and a 60-Mode Interferometer in a 10^{14}-Dimensional Hilbert Space. , 2019, Physical review letters.

[4]  Y. Kurochkin,et al.  Quantum noise extraction from the interference of laser pulses in an optical quantum random number generator. , 2019, Optics express.

[5]  Adrian Cho,et al.  Google claims quantum computing milestone. , 2019, Science.

[6]  Burhan Gulbahar,et al.  Quantum Spatial Modulation of Optical Channels: Quantum Boosting in Spectral Efficiency , 2019, IEEE Communications Letters.

[7]  Yang Li,et al.  Quantum Algorithm Design: Techniques and Applications , 2019, J. Syst. Sci. Complex..

[8]  Chiara Macchiavello,et al.  An artificial neuron implemented on an actual quantum processor , 2018, npj Quantum Information.

[9]  U. Vazirani,et al.  On the complexity and verification of quantum random circuit sampling , 2018, Nature Physics.

[10]  B. Gulbahar Theory of Quantum Path Entanglement and Interference with Multiplane Diffraction of Classical Light Sources , 2018, Entropy.

[11]  Graham D. Marshall,et al.  Large-scale silicon quantum photonics implementing arbitrary two-qubit processing , 2018, Nature Photonics.

[12]  S. Walborn,et al.  Experimental quantum information processing with the Talbot effect , 2018, Journal of Optics.

[13]  Rafael Torres,et al.  Huygens-Fresnel principle: Analyzing consistency at the photon level , 2018, 1806.08464.

[14]  Yi Luo,et al.  All-optical machine learning using diffractive deep neural networks , 2018, Science.

[15]  Zvika Brakerski,et al.  A Cryptographic Test of Quantumness and Certifiable Randomness from a Single Quantum Device , 2018, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).

[16]  Lee Gomes,et al.  Quantum computing: Both here and not here , 2018, IEEE Spectrum.

[17]  Adam Bouland,et al.  Quantum Supremacy and the Complexity of Random Circuit Sampling , 2018, ITCS.

[18]  Laura Mančinska,et al.  Multidimensional quantum entanglement with large-scale integrated optics , 2018, Science.

[19]  Xiao Jiang,et al.  Toward Scalable Boson Sampling with Photon Loss. , 2018, Physical review letters.

[20]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[21]  Alán Aspuru-Guzik,et al.  Quantum Neuron: an elementary building block for machine learning on quantum computers , 2017, ArXiv.

[22]  Dmitri Maslov,et al.  Toward the first quantum simulation with quantum speedup , 2017, Proceedings of the National Academy of Sciences.

[23]  Laurent Larger,et al.  Reinforcement Learning in a large scale photonic Recurrent Neural Network , 2017, Optica.

[24]  Burhan Gulbahar,et al.  Quantum path computing: computing architecture with propagation paths in multiple plane diffraction of classical sources of fermion and boson particles , 2017, Quantum Information Processing.

[25]  Shi-Jie Wei,et al.  Realization of the Algorithm for System of Linear Equations in Duality Quantum Computing , 2017, 2017 IEEE 85th Vehicular Technology Conference (VTC Spring).

[26]  M. Plenio,et al.  Resource Theory of Superposition. , 2017, Physical review letters.

[27]  Qiang Zhou,et al.  Practical quantum random-number generation based on sampling vacuum fluctuations , 2017, Quantum Eng..

[28]  S. Walborn,et al.  Free-space entangled quantum carpets , 2017, 1702.07391.

[29]  Scott Aaronson,et al.  Complexity-Theoretic Foundations of Quantum Supremacy Experiments , 2016, CCC.

[30]  Peter Wittek,et al.  Quantum Enhanced Inference in Markov Logic Networks , 2016, Scientific Reports.

[31]  U. Sinha,et al.  Measuring the deviation from the superposition principle in interference experiments , 2016, WOMEN IN PHYSICS: 6th IUPAP International Conference on Women in Physics.

[32]  R. Boyd,et al.  Exotic looped trajectories of photons in three-slit interference , 2016, Nature Communications.

[33]  M. Plenio,et al.  Colloquium: quantum coherence as a resource , 2016, 1609.02439.

[34]  Son Thai Le,et al.  Periodic nonlinear Fourier transform for fiber-optic communications, Part I: theory and numerical methods. , 2016, Optics express.

[35]  Xiaogang Qiang,et al.  Quantum processing by remote quantum control , 2016, 1606.06131.

[36]  Chao Chen,et al.  Experimental Ten-Photon Entanglement. , 2016, Physical review letters.

[37]  I. D. Paz,et al.  Gouy phase in nonclassical paths in a triple-slit interference experiment , 2015, 1510.04186.

[38]  Ingo Fischer,et al.  Reconfigurable semiconductor laser networks based on diffractive coupling. , 2015, Optics letters.

[39]  M. Padgett,et al.  Testing for entanglement with periodic coarse graining , 2015, 1506.01095.

[40]  J. O'Brien,et al.  Universal linear optics , 2015, Science.

[41]  Ying Li,et al.  Resource costs for fault-tolerant linear optical quantum computing , 2015, 1504.02457.

[42]  Yangjian Cai,et al.  Experimental study of the fractional Fourier transform for a hollow Gaussian beam , 2014 .

[43]  H. Vincent Poor,et al.  Fast Numerical Nonlinear Fourier Transforms , 2014, IEEE Transactions on Information Theory.

[44]  Joseph Shamir,et al.  Energy efficient computing exploiting the properties of light , 2013, Optics & Photonics - Optical Engineering + Applications.

[45]  U. Sinha,et al.  Nonclassical paths in quantum interference experiments. , 2013, Physical review letters.

[46]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[47]  S. Aaronson,et al.  The computational complexity of linear optics , 2010, Theory Comput..

[48]  Alfred R. Osborne,et al.  Nonlinear Ocean Waves and the Inverse Scattering Transform , 2010 .

[49]  Long Gui-lu,et al.  Duality Computing in Quantum Computers , 2008 .

[50]  Y. Kadoya,et al.  Measurement and control of spatial qubits generated by passing photons through double slits , 2008, 0805.1123.

[51]  Yang Liu,et al.  Duality and Recycling Computing in Quantum Computers , 2007, 0708.1986.

[52]  Stan Gudder,et al.  Mathematical Theory of Duality Quantum Computers , 2007, Quantum Inf. Process..

[53]  R. Robson An Exactly Solvable Model , 2006 .

[54]  G. Lima,et al.  Propagation of spatially entangled qudits through free space , 2006, Physical Review A.

[55]  G. Long General Quantum Interference Principle and Duality Computer , 2005, quant-ph/0512120.

[56]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[57]  Francesco Pampaloni,et al.  Gaussian, Hermite-Gaussian, and Laguerre-Gaussian beams: A primer , 2004, physics/0410021.

[58]  K. Życzkowski,et al.  Negativity of the Wigner function as an indicator of non-classicality , 2004, quant-ph/0406015.

[59]  Bernard Deconinck,et al.  Computing Riemann theta functions , 2002, Math. Comput..

[60]  Z. Zalevsky,et al.  The Fractional Fourier Transform: with Applications in Optics and Signal Processing , 2001 .

[61]  Xiao-jun Liu,et al.  Approximate description for Bessel, Bessel–Gauss, and Gaussian beams with finite aperture , 1999 .

[62]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[63]  H M Ozaktas,et al.  Toward an optimal foundation architecture for optoelectronic computing. Part II. Physical construction and application platforms. , 1997, Applied optics.

[64]  H M Ozaktas,et al.  Toward an optimal foundation architecture for optoelectronic computing. Part I. Regularly interconnected device planes. , 1997, Applied optics.

[65]  H. M. Ozaktas,et al.  Towards an optimal foundation architecture for optoelectronic computing , 1996, Proceedings of Massively Parallel Processing Using Optical Interconnections.

[66]  J Shamir,et al.  Wave particle duality considerations in optical computing. , 1989, Applied optics.

[67]  M. A. Breazeale,et al.  A diffraction beam field expressed as the superposition of Gaussian beams , 1988 .

[68]  Chen,et al.  Nonlinear self-modulation: An exactly solvable model. , 1988, Physical review. A, General physics.

[69]  Jeffrey C. Lagarias,et al.  The computational complexity of simultaneous Diophantine approximation problems , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[70]  J. Goodman Introduction to Fourier optics , 1969 .

[71]  A. Erdélyi,et al.  Tables of integral transforms , 1955 .

[72]  John J. Healy,et al.  Linear Canonical Transforms , 2016 .

[73]  John J. Healy,et al.  Linear canonical transforms : theory and applications , 2016 .

[74]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[75]  Wang Chuan,et al.  Allowable Generalized Quantum Gates , 2009 .

[76]  Mario Marchese,et al.  Techniques and applications , 2003 .

[77]  Daniela Dragoman,et al.  n-step optical simulation of the n-qubit state: Applications in optical computing , 2002 .

[78]  А Е Китаев,et al.  Квантовые вычисления: алгоритмы и исправление ошибок@@@Quantum computations: algorithms and error correction , 1997 .

[79]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[80]  B. Riemann,et al.  Theorie der Abel'schen Functionen. , 1857 .