Going Higher in the First-Order Quantifier Alternation Hierarchy on Words

We investigate the quantifier alternation hierarchy in first-order logic on finite words. Levels in this hierarchy are defined by counting the number of quantifier alternations in formulas. We prove that one can decide membership of a regular language to the levels \(\mathcal{B}\Sigma_{2}\) (boolean combination of formulas having only 1 alternation) and Σ3 (formulas having only 2 alternations beginning with an existential block). Our proof works by considering a deeper problem, called separation, which, once solved for lower levels, allows us to solve membership for higher levels.

[1]  Mustapha Arfi Polynomial Operations on Rational Languages , 1987, STACS.

[2]  Denis Thérien,et al.  Classification of Finite Monoids: The Language Approach , 1981, Theor. Comput. Sci..

[3]  Marcel Paul Schützenberger,et al.  On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..

[4]  Pascal Weil,et al.  Polynomial closure and unambiguous product , 1995, Theory of Computing Systems.

[5]  Wolfgang Thomas,et al.  Classifying Regular Events in Symbolic Logic , 1982, J. Comput. Syst. Sci..

[6]  Manfred Kufleitner The Height of Factorization Forests , 2008, MFCS.

[7]  Howard Straubing,et al.  Semigroups and Languages of Dot-Depth Two , 1988, Theor. Comput. Sci..

[8]  Mikolaj Bojanczyk,et al.  Regular Languages of Infinite Trees That Are Boolean Combinations of Open Sets , 2012, ICALP.

[9]  Wolfgang Thomas,et al.  A Concatenation Game and the Dot-Depth Hierarchy , 1987, Computation Theory and Logic.

[10]  Jorge Almeida,et al.  New decidable upper bound of the second level in the Straubing-Thérien concatenation hierarchy of star-free languages , 2010, Discret. Math. Theor. Comput. Sci..

[11]  Howard Straubing,et al.  FINITE SEMIGROUP VARIETIES OF THE FORM V,D , 1985 .

[12]  Howard Straubing Semigroups and Languages of Dot-Depth 2 , 1986, ICALP.

[13]  Jean-Éric Pin,et al.  Theme and Variations on the Concatenation Product , 2011, CAI.

[14]  R. McNaughton,et al.  Counter-Free Automata , 1971 .

[15]  J. Pin,et al.  THE WREATH PRODUCT PRINCIPLE FOR ORDERED SEMIGROUPS , 2002 .

[16]  Howard Straubing,et al.  A Generalization of the Schützenberger Product of Finite Monoids , 1981, Theor. Comput. Sci..

[17]  Jorge Almeida,et al.  Some Algorithmic Problems for Pseudovarieties , 1999 .

[18]  Imre Simon,et al.  Piecewise testable events , 1975, Automata Theory and Formal Languages.

[19]  Imre Simon Factorization Forests of Finite Height , 1990, Theor. Comput. Sci..

[20]  Thomas Place,et al.  Separating regular languages with first-order logic , 2014, CSL-LICS.

[21]  Wim Martens,et al.  Efficient Separability of Regular Languages by Subsequences and Suffixes , 2013, ICALP.

[22]  Mikolaj Bojanczyk Factorization Forests , 2009, Developments in Language Theory.

[23]  Janusz A. Brzozowski,et al.  The Dot-Depth Hierarchy of Star-Free Languages is Infinite , 1978, J. Comput. Syst. Sci..

[24]  Janusz A. Brzozowski,et al.  Dot-Depth of Star-Free Events , 1971, Journal of computer and system sciences (Print).

[25]  Howard Straubing Finite Automata, Formal Logic, and Circuit Complexity , 1994, Progress in Theoretical Computer Science.

[26]  Jean-Éric Pin Bridges for Concatenation Hierarchies , 1998, ICALP.

[27]  Thomas Place,et al.  On Separation by Locally Testable and Locally Threshold Testable Languages , 2013, 1308.0181.

[28]  Denis Thérien,et al.  DIAMONDS ARE FOREVER: THE VARIETY DA , 2002 .

[29]  Thomas Wilke,et al.  Over words, two variables are as powerful as one quantifier alternation , 1998, STOC '98.

[30]  Thomas Place,et al.  Separating Regular Languages by Piecewise Testable and Unambiguous Languages , 2013, MFCS.

[31]  Howard Straubing,et al.  Monoids of upper triangular boolean matrices , 1981 .

[32]  Thomas Place,et al.  Separating Regular Languages by Locally Testable and Locally Threshold Testable Languages , 2013, FSTTCS.