Multi-label enhancement based self-supervised deep cross-modal hashing

[1]  Gang Hua,et al.  A convolutional neural network cascade for face detection , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  Erwin M. Bakker,et al.  CycleMatch: A cycle-consistent embedding network for image-text matching , 2019, Pattern Recognit..

[3]  Ling Shao,et al.  Cycle-Consistent Deep Generative Hashing for Cross-Modal Retrieval , 2018, IEEE Transactions on Image Processing.

[4]  David W. Jacobs,et al.  Generalized Multiview Analysis: A discriminative latent space , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[5]  Hugo Larochelle,et al.  Topic Modeling of Multimodal Data: An Autoregressive Approach , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[6]  Xin Huang,et al.  An Overview of Cross-Media Retrieval: Concepts, Methodologies, Benchmarks, and Challenges , 2017, IEEE Transactions on Circuits and Systems for Video Technology.

[7]  Geyong Min,et al.  Deep Discrete Cross-Modal Hashing for Cross-Media Retrieval , 2018, Pattern Recognit..

[8]  Devraj Mandal,et al.  Generalized Semantic Preserving Hashing for Cross-Modal Retrieval , 2019, IEEE Transactions on Image Processing.

[9]  Nikos Paragios,et al.  Data fusion through cross-modality metric learning using similarity-sensitive hashing , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[10]  Jianmin Wang,et al.  Semantics-preserving hashing for cross-view retrieval , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  Changde Du,et al.  Semi-supervised cross-modal image generation with generative adversarial networks , 2020, Pattern Recognit..

[12]  Guiguang Ding,et al.  Collective Matrix Factorization Hashing for Multimodal Data , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  Yuxin Peng,et al.  CM-GANs , 2019, ACM Trans. Multim. Comput. Commun. Appl..

[14]  Léon Bottou,et al.  Large-Scale Machine Learning with Stochastic Gradient Descent , 2010, COMPSTAT.

[15]  Dongqing Zhang,et al.  Large-Scale Supervised Multimodal Hashing with Semantic Correlation Maximization , 2014, AAAI.

[16]  Hugo Jair Escalante,et al.  The segmented and annotated IAPR TC-12 benchmark , 2010, Comput. Vis. Image Underst..

[17]  Xinbo Gao,et al.  Triplet-Based Deep Hashing Network for Cross-Modal Retrieval , 2018, IEEE Transactions on Image Processing.

[18]  Erwin M. Bakker,et al.  Self-constraining and attention-based hashing network for bit-scalable cross-modal retrieval , 2020, Neurocomputing.

[19]  Bin Liu,et al.  Cross-Modal Hamming Hashing , 2018, ECCV.

[20]  Wu-Jun Li,et al.  Deep Cross-Modal Hashing , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[21]  Yueting Zhuang,et al.  Multi-modal Mutual Topic Reinforce Modeling for Cross-media Retrieval , 2014, ACM Multimedia.

[22]  Xiaoxiao Li,et al.  Semantic Image Segmentation via Deep Parsing Network , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[23]  Mark J. Huiskes,et al.  The MIR flickr retrieval evaluation , 2008, MIR '08.

[24]  Ting Liu,et al.  Recent advances in convolutional neural networks , 2015, Pattern Recognit..

[25]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[26]  Jian Sun,et al.  Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition , 2015, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Yueting Zhuang,et al.  Deep Compositional Cross-modal Learning to Rank via Local-Global Alignment , 2015, ACM Multimedia.

[28]  C. V. Jawahar,et al.  Multi-label Cross-Modal Retrieval , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[29]  Zhiming Luo,et al.  Invariance Matters: Exemplar Memory for Domain Adaptive Person Re-Identification , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[30]  Michael S. Lew,et al.  Deep learning for visual understanding: A review , 2016, Neurocomputing.

[31]  Ross B. Girshick,et al.  Fast R-CNN , 2015, 1504.08083.

[32]  Jian Pei,et al.  Parallel field alignment for cross media retrieval , 2013, ACM Multimedia.

[33]  Devraj Mandal,et al.  Generalized Semantic Preserving Hashing for N-Label Cross-Modal Retrieval , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[34]  Yao Zhao,et al.  Cross-Modal Retrieval With CNN Visual Features: A New Baseline , 2017, IEEE Transactions on Cybernetics.

[35]  David Malah,et al.  Speech enhancement using a minimum mean-square error log-spectral amplitude estimator , 1984, IEEE Trans. Acoust. Speech Signal Process..

[36]  Zi Huang,et al.  Inter-media hashing for large-scale retrieval from heterogeneous data sources , 2013, SIGMOD '13.

[37]  Guiguang Ding,et al.  Latent semantic sparse hashing for cross-modal similarity search , 2014, SIGIR.

[38]  Tieniu Tan,et al.  Joint Feature Selection and Subspace Learning for Cross-Modal Retrieval , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  Yuxin Peng,et al.  Unsupervised Generative Adversarial Cross-modal Hashing , 2017, AAAI.

[40]  Erwin M. Bakker,et al.  Deep binary codes for large scale image retrieval , 2017, Neurocomputing.

[41]  Erwin M. Bakker,et al.  Multi-label semantics preserving based deep cross-modal hashing , 2021, Signal Process. Image Commun..

[42]  Trevor Darrell,et al.  Learning cross-modality similarity for multinomial data , 2011, 2011 International Conference on Computer Vision.

[43]  Jian Wang,et al.  Image-Text Cross-Modal Retrieval via Modality-Specific Feature Learning , 2015, ICMR.

[44]  Michael Isard,et al.  A Multi-View Embedding Space for Modeling Internet Images, Tags, and Their Semantics , 2012, International Journal of Computer Vision.

[45]  Shih-Fu Chang,et al.  Semi-Supervised Hashing for Large-Scale Search , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.