Extended multiscale finite element method for mechanical analysis of heterogeneous materials

[1]  J. K. Wu,et al.  Extended multiscale finite element method for elasto-plastic analysis of 2D periodic lattice truss materials , 2010 .

[2]  Xikui Li,et al.  A micro–macro homogenization approach for discrete particle assembly – Cosserat continuum modeling of granular materials , 2010 .

[3]  Fu Zhen-dong Generalized plane and space rectangular elements , 2010 .

[4]  Zheng Yong-gang Plane 4 node generalized isoparametric element , 2010 .

[5]  Xiaoqing Shi,et al.  Numerical simulation of land subsidence induced by groundwater overexploitation in Su-Xi-Chang area, China , 2009 .

[6]  Hongwu Zhang,et al.  Coupling upscaling finite element method for consolidation analysis of heterogeneous saturated porous media , 2009 .

[7]  B. Schrefler,et al.  Multiscale Methods for Composites: A Review , 2009 .

[8]  Jacob Fish,et al.  Toward realization of computational homogenization in practice , 2008 .

[9]  C. Miehe,et al.  On multiscale FE analyses of heterogeneous structures: from homogenization to multigrid solvers , 2007 .

[10]  Bernhard A. Schrefler,et al.  Thermo‐mechanical analysis of periodic multiphase materials by a multiscale asymptotic homogenization approach , 2007 .

[11]  E Weinan,et al.  Heterogeneous multiscale methods: A review , 2007 .

[12]  E. Vanden-Eijnden,et al.  The Heterogeneous Multiscale Method: A Review , 2007 .

[13]  Yalchin Efendiev,et al.  Accurate multiscale finite element methods for two-phase flow simulations , 2006, J. Comput. Phys..

[14]  王辉,et al.  PARAMETRIC VARIATIONAL PRINCIPLE BASED ELASTIC-PLASTIC ANALYSIS OF HETEROGENEOUS MATERIALS WITH VORONOI FINITE ELEMENT METHOD , 2006 .

[15]  Stein Krogstad,et al.  A Hierarchical Multiscale Method for Two-Phase Flow Based upon Mixed Finite Elements and Nonuniform Coarse Grids , 2006, Multiscale Model. Simul..

[16]  Gengdong Cheng,et al.  Comparison of prediction on effective elastic property and shape optimization of truss material with periodic microstructure , 2006 .

[17]  Xinwei Wang,et al.  On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites , 2006 .

[18]  E Weinan,et al.  The heterogeneous multi-scale method for homogenization problems , 2005 .

[19]  Li Ren,et al.  Finite volume multiscale finite element method for solving the groundwater flow problems in heterogeneous porous media , 2005 .

[20]  Thomas Y. Hou,et al.  Multiscale modelling and computation of fluid flow , 2005 .

[21]  T. Hou,et al.  Multiscale Finite Element Methods for Nonlinear Problems and Their Applications , 2004 .

[22]  Jørg E. Aarnes,et al.  On the Use of a Mixed Multiscale Finite Element Method for GreaterFlexibility and Increased Speed or Improved Accuracy in Reservoir Simulation , 2004, Multiscale Model. Simul..

[23]  H. Tchelepi,et al.  Multi-scale finite-volume method for elliptic problems in subsurface flow simulation , 2003 .

[24]  V Varvara Kouznetsova,et al.  Computational homogenization for the multi-scale analysis of multi-phase materials , 2002 .

[25]  N. Kikuchi,et al.  A class of general algorithms for multi-scale analyses of heterogeneous media , 2001 .

[26]  J. Chaboche,et al.  FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials , 2000 .

[27]  Frédéric Feyel,et al.  Multiscale FE2 elastoviscoplastic analysis of composite structures , 1999 .

[28]  Thomas Y. Hou,et al.  Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients , 1999, Math. Comput..

[29]  S. Torquato,et al.  Scale effects on the elastic behavior of periodic andhierarchical two-dimensional composites , 1999 .

[30]  Mark S. Shephard,et al.  Computational plasticity for composite structures based on mathematical homogenization: Theory and practice , 1997 .

[31]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[32]  Somnath Ghosh,et al.  Multiple scale analysis of heterogeneous elastic structures using homogenization theory and voronoi cell finite element method , 1995 .

[33]  I. Babuska,et al.  Special finite element methods for a class of second order elliptic problems with rough coefficients , 1994 .

[34]  Sia Nemat-Nasser,et al.  Double-inclusion model and overall moduli of multi-phase composites , 1994 .

[35]  N. Kikuchi,et al.  Preprocessing and postprocessing for materials based on the homogenization method with adaptive fini , 1990 .

[36]  E. Sanchez-Palencia,et al.  Homogenization Techniques for Composite Media , 1987 .

[37]  I. Babuska,et al.  Generalized Finite Element Methods: Their Performance and Their Relation to Mixed Methods , 1983 .

[38]  R. Christensen,et al.  Solutions for effective shear properties in three phase sphere and cylinder models , 1979 .

[39]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[40]  Ivo Babuška,et al.  Homogenization Approach In Engineering , 1976 .

[41]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[42]  S. Fenves Numerical and computer methods in structural mechanics , 1973 .

[43]  R. Hill A self-consistent mechanics of composite materials , 1965 .

[44]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .

[45]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[46]  S. Timoshenko,et al.  Theory of elasticity , 1975 .