A joint state and parameter estimation scheme for nonlinear dynamical systems

We present a novel algorithm for concurrent model state and parameter estimation in nonlinear dynamical systems. The new scheme uses ideas from three dimensional variational data assimilation (3D-Var) and the extended Kalman filter (EKF) together with the technique of state augmentation to estimate uncertain model parameters alongside the model state variables in a sequential filtering system. The method is relatively simple to implement and computationally inexpensive to run for large systems with relatively few parameters. We demonstrate the efficacy of the method via a series of identical twin experiments with three simple dynamical system models. The scheme is able to recover the parameter values to a good level of accuracy, even when observational data are noisy. We expect this new technique to be easily transferable to much larger models.

[1]  P. Bates,et al.  Scheduling satellite-based SAR acquisition for sequential assimilation of water level observations into flood modelling , 2013 .

[2]  Sarah L. Dance,et al.  Data assimilation for state and parameter estimation: application to morphodynamic modelling , 2013 .

[3]  Nancy Nichols,et al.  A hybrid data assimilation scheme for model parameter estimation: Application to morphodynamic modelling , 2011 .

[4]  Ian G. Enting,et al.  Using the Kalman filter for parameter estimation in biogeochemical models , 2008 .

[5]  Ross N. Bannister,et al.  A review of forecast error covariance statistics in atmospheric variational data assimilation. I: Characteristics and measurements of forecast error covariances , 2008 .

[6]  R. Bannister A review of forecast error covariance statistics in atmospheric variational data assimilation. II: Modelling the forecast error covariance statistics , 2008 .

[7]  S. Roxburgh,et al.  OptIC project: An intercomparison of optimization techniques for parameter estimation in terrestrial biogeochemical models , 2007 .

[8]  J. M. Lewis,et al.  Dynamic Data Assimilation: A Least Squares Approach , 2006 .

[9]  D. P. DEE,et al.  Bias and data assimilation , 2005 .

[10]  B. G. Ruessink,et al.  Calibration of nearshore process models—application of a hybrid genetic algorithm , 2005 .

[11]  Nancy Nichols,et al.  Assimilation of data into an ocean model with systematic errors near the equator , 2004 .

[12]  Suzanne J.M.H. Hulscher,et al.  Use of a genetic algorithm to improve predictions of alternate bar dynamics , 2003 .

[13]  M. Fisher,et al.  Background Error Covariance Modelling , 2003 .

[14]  D. Prandle,et al.  Derivation of sediment resuspension rates from acoustic backscatter time-series in tidal waters , 2003 .

[15]  Nancy Nichols,et al.  DATA ASSIMILATION: AIMS AND BASIC CONCEPTS , 2003 .

[16]  N. B. Ingleby,et al.  The Met. Office global three‐dimensional variational data assimilation scheme , 2000 .

[17]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[18]  L. Chambers Linear and Nonlinear Waves , 2000, The Mathematical Gazette.

[19]  D. Durran Numerical methods for wave equations in geophysical fluid dynamics , 1999 .

[20]  Nancy Nichols,et al.  Treatment of systematic errors in sequential data assimilation , 1999 .

[21]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[22]  P. Courtier,et al.  The ECMWF implementation of three‐dimensional variational assimilation (3D‐Var). I: Formulation , 1998 .

[23]  P. Houtekamer,et al.  Data Assimilation Using an Ensemble Kalman Filter Technique , 1998 .

[24]  Ionel Michael Navon,et al.  Practical and theoretical aspects of adjoint parameter estimation and identifiability in meteorology and oceanography , 1998 .

[25]  Geir Evensen,et al.  Advanced Data Assimilation for Strongly Nonlinear Dynamics , 1997 .

[26]  Bruno CaprileIRST MODEL CALIBRATION , 1997 .

[27]  K. Morton,et al.  Numerical Solution of Partial Differential Equations , 1995 .

[28]  Michael Ghil,et al.  Advanced data assimilation in strongly nonlinear dynamical systems , 1994 .

[29]  R. Daley Atmospheric Data Analysis , 1991 .

[30]  R. LeVeque Numerical methods for conservation laws , 1990 .

[31]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[32]  J. Thompson,et al.  Nonlinear Dynamics and Chaos: Geometrical Methods for Engineers and Scientists , 1986 .

[33]  C. Sparrow The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors , 1982 .

[34]  Philip E. Gill,et al.  Practical optimization , 1981 .

[35]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[36]  Stephen Barnett,et al.  Introduction to Mathematical Control Theory , 1975 .

[37]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[38]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[39]  J. Miller Numerical Analysis , 1966, Nature.

[40]  E. Lorenz Deterministic nonperiodic flow , 1963 .