Heat Transfer and Rheological Behaviour of Nanofluids – A Review

Nanofluids refer to dilute liquid suspensions of nanoparticles. Over the past decade, such materials generated lots of excitement mainly because a number of researchers reported drastic thermal conductivity enhancement with very small particle loadings. This also sparked hot debates on the underlying physics governing the experimentally observed phenomena. This paper gives an updated review on the topic. It is not intended to be exhaustive but meant to cover the main aspects associated with nanofluids with a specific focus on heat transfer applications. The review covers transport properties of nanofluids in particular thermal conductivity and shear viscosity, and heat transfer of nanofluids under convective and boiling conditions. No new physics appears to be behind the experimentally observed thermal conductivity enhancement as the vast majority of the experimental data fall within the range predicted by the conventional effective medium theory in combination with information of nanoparticle structuring. There seems to be no new physics either in terms of the experimentally observed increase in the shear viscosity of nanofluids as almost all the experimental data can be quantitatively interpreted by the conventional rheological and colloidal theories. There is no sufficient quantitative information, however, to infer the dominant mechanisms for heat transfer enhancement under convective and boiling conditions, where many controversies remain and require further research.

[1]  S. Edwards,et al.  Dynamics of rod-like macromolecules in concentrated solution. Part 2 , 1978 .

[2]  Yulong Ding,et al.  Experimental investigation into the pool boiling heat transfer of aqueous based γ-alumina nanofluids , 2005 .

[3]  Jeongbae Kim,et al.  EXPERIMENTAL STUDY ON CHF CHARACTERISTICS OF WATER-TIO2 NANO-FLUIDS , 2006 .

[4]  W. Roetzel,et al.  TEMPERATURE DEPENDENCE OF THERMAL CONDUCTIVITY ENHANCEMENT FOR NANOFLUIDS , 2003 .

[5]  S. Phillpot,et al.  Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids) , 2002 .

[6]  E. Grulke,et al.  Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow , 2005 .

[7]  J. Sambles,et al.  Slow waves caused by cuts perpendicular to a single subwavelength slit in metal , 2007 .

[8]  F. Moukalled,et al.  Particle migration in a concentrated suspension flowing between rotating parallel plates: Investigation of diffusion flux coefficients , 2005 .

[9]  S. Kim,et al.  Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux , 2007 .

[10]  Yulong Ding,et al.  Effective thermal and electrical conductivity of carbon nanotube composites , 2007 .

[11]  R. Prasher,et al.  Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids , 2006 .

[12]  P. F. Vassallo,et al.  Pool boiling heat transfer experiments in silica–water nano-fluids , 2004 .

[13]  J. W. Goodwin,et al.  Shear field modification of strongly flocculated suspensions — Aggregate morphology , 1991 .

[14]  G. Batchelor The effect of Brownian motion on the bulk stress in a suspension of spherical particles , 1977, Journal of Fluid Mechanics.

[15]  Marc J. Assael,et al.  Thermal Conductivity of Suspensions of Carbon Nanotubes in Water , 2004 .

[16]  D. Cahill,et al.  Thermal conductivity of nanoparticle suspensions , 2006 .

[17]  M. Radosavljevic,et al.  Carbon nanotube composites for thermal management , 2002, cond-mat/0205418.

[18]  W. Rohsenow,et al.  Handbook of Heat Transfer , 1998 .

[19]  Robert M Ziff,et al.  Effect of monomer geometry on the fractal structure of colloidal rod aggregates. , 2004, Physical review letters.

[20]  Thomas J. Dougherty,et al.  A Mechanism for Non‐Newtonian Flow in Suspensions of Rigid Spheres , 1959 .

[21]  Ziyad N. Masoud,et al.  Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids , 2008 .

[22]  Albert Einstein,et al.  Berichtigung zu meiner Arbeit: „Eine neue Bestimmung der Moleküldimensionen”︁ [AdP 34, 591 (1911)] , 2005, Annalen der Physik.

[23]  B. Yang,et al.  Temperature-dependent thermal conductivity of nanorod-based nanofluids , 2006 .

[24]  J. W. Goodwin Colloids and Interfaces with Surfactants and Polymers: An Introduction , 2004 .

[25]  A. Fic,et al.  Thermal Analysis of Vertical Ground Exchangers of Heat Pumps , 2006 .

[26]  Haisheng Chen,et al.  Rheological behaviour of ethylene glycol-titanate nanotube nanofluids , 2009 .

[27]  Eric R. Weeks,et al.  Particle migration in pressure-driven flow of a Brownian suspension , 2003, Journal of Fluid Mechanics.

[28]  Chunqing Tan,et al.  Rheological behaviour of nanofluids , 2007 .

[29]  Seok Pil Jang,et al.  Flow and convective heat transfer characteristics of water-based Al2O3 nanofluids in fully developed laminar flow regime , 2009 .

[30]  S. Edwards,et al.  Dynamics of concentrated polymer systems. Part 3.—The constitutive equation , 1978 .

[31]  Yulong Ding,et al.  Natural convective heat transfer of suspensions of titanium dioxide nanoparticles (nanofluids) , 2006 .

[32]  M. M. Cross Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems , 1965 .

[33]  W. Roetzel,et al.  Temperature oscillation techniques for simultaneous measurement of thermal diffusivity and conductivity , 1995 .

[34]  J. Koo,et al.  A new thermal conductivity model for nanofluids , 2004 .

[35]  Yulong Ding,et al.  Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids) , 2007 .

[36]  Pawel Keblinski,et al.  Role of thermal boundary resistance on the heat flow in carbon-nanotube composites , 2004 .

[37]  T. Mckrell,et al.  Laminar convective heat transfer and viscous pressure loss of alumina–water and zirconia–water nanofluids , 2009 .

[38]  Young I Cho,et al.  HYDRODYNAMIC AND HEAT TRANSFER STUDY OF DISPERSED FLUIDS WITH SUBMICRON METALLIC OXIDE PARTICLES , 1998 .

[39]  William W. Yu,et al.  ANOMALOUSLY INCREASED EFFECTIVE THERMAL CONDUCTIVITIES OF ETHYLENE GLYCOL-BASED NANOFLUIDS CONTAINING COPPER NANOPARTICLES , 2001 .

[40]  L. Bromberg,et al.  Enhancement of Oxygen Mass Transfer Using Functionalized Magnetic Nanoparticles , 2006 .

[41]  Somchai Wongwises,et al.  Critical review of heat transfer characteristics of nanofluids , 2007 .

[42]  W. Roetzel,et al.  Conceptions for heat transfer correlation of nanofluids , 2000 .

[43]  Y. Xuan,et al.  Aggregation structure and thermal conductivity of nanofluids , 2003 .

[44]  A. Mujumdar,et al.  Heat transfer characteristics of nanofluids: a review , 2007 .

[45]  J. H. Kim,et al.  Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer , 2003 .

[46]  Xianfan Xu,et al.  Thermal Conductivity of Nanoparticle -Fluid Mixture , 1999 .

[47]  Yulong Ding,et al.  Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids) , 2004 .

[48]  Sam F. Edwards,et al.  Dynamics of rod-like macromolecules in concentrated solution. Part 1 , 1978 .

[49]  K. Leong,et al.  Thermophysical and electrokinetic properties of nanofluids – A critical review , 2008 .

[50]  J. Buongiorno,et al.  Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids , 2006 .

[51]  Jason Chuang,et al.  Experimental microchannel heat sink performance studies using nanofluids , 2007 .

[52]  W. Russel,et al.  Structure and breakup of flocs subjected to fluid stresses: II. Theory , 1987 .

[53]  W. Roetzel,et al.  Natural convection of nano-fluids , 2003 .

[54]  Yulong Ding,et al.  Pool Boiling Heat Transfer of Aqueous TiO 2 -Based Nanofluids , 2006 .

[55]  Stephen U. S. Choi,et al.  Cooling performance of a microchannel heat sink with nanofluids , 2006 .

[56]  A. G. Agwu Nnanna,et al.  Experimental Model of Temperature-Driven Nanofluid , 2007 .

[57]  Sarit K. Das,et al.  Model for heat conduction in nanofluids. , 2004, Physical review letters.

[58]  Yulong Ding,et al.  Effect on Heat Transfer of Particle Migration in Suspensions of Nanoparticles Flowing Through Minichannels , 2004 .

[59]  M. Louge,et al.  Heat transfer enhancement in suspensions of agitated solids. Part III: Thermophoretic transport of nanoparticles in the diffusion limit , 2008 .

[60]  Q. Xue,et al.  A model of thermal conductivity of nanofluids with interfacial shells , 2005 .

[61]  W. Russel,et al.  Structure and breakup of flocs subjected to fluid stresses: III. Converging flow , 1987 .

[62]  Lv Lun-Chun,et al.  Boiling characteristics in small vertical tubes with closed bottom for nanofluids and nanoparticle-suspensions , 2008 .

[63]  P. Carreau,et al.  Rheological properties of suspensions of polyethylene-coated aluminum nanoparticles , 2006 .

[64]  Huaqing Xie,et al.  Thermal conductivity enhancement of suspensions containing nanosized alumina particles , 2002 .

[65]  A. Nikolov,et al.  Spreading of nanofluids on solids , 2003, Nature.

[66]  Gang Chen,et al.  Nonlocal and Nonequilibrium Heat Conduction in the Vicinity of Nanoparticles , 1996 .

[67]  Jinlin Wang,et al.  Measurements of nanofluid viscosity and its implications for thermal applications , 2006 .

[68]  Soon-Heung Chang,et al.  Boiling heat transfer performance and phenomena of Al2O 3-water nano-fluids from a plain surface in a pool , 2004 .

[69]  B. Wang,et al.  A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles , 2003 .

[70]  Dongsheng Wen,et al.  Mechanisms of thermal nanofluids on enhanced critical heat flux (CHF) , 2008 .

[71]  W. Russel,et al.  Structure and breakup of flocs subjected to fluid stresses: I. Shear experiments , 1986 .

[72]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.

[73]  D. Tang,et al.  Thermal-Conductivity and Thermal-Diffusivity Measurements of Nanofluids by 3ω Method and Mechanism Analysis of Heat Transport , 2007 .

[74]  Ronald G. Larson,et al.  The rheology of dilute solutions of flexible polymers: Progress and problems , 2005 .

[75]  Chow Viscosities of concentrated dispersions. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[76]  C. Nan,et al.  A simple model for thermal conductivity of carbon nanotube-based composites , 2003 .

[77]  J. Buongiorno,et al.  Experimental Investigation of Turbulent Convective Heat Transfer and Pressure Loss of Alumina/Water and Zirconia/Water Nanoparticle Colloids (Nanofluids) in Horizontal Tubes , 2008 .

[78]  Wenhua Yu,et al.  Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements , 2008 .

[79]  S. Edwards,et al.  Dynamics of concentrated polymer systems. Part 1.—Brownian motion in the equilibrium state , 1978 .

[80]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical Review Letters.

[81]  Xing Zhang,et al.  Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles , 2006 .

[82]  Clement Kleinstreuer,et al.  Laminar nanofluid flow in microheat-sinks , 2005 .

[83]  E. Grulke,et al.  Anomalous thermal conductivity enhancement in nanotube suspensions , 2001 .

[84]  D. Cahill Thermal conductivity measurement from 30 to 750 K: the 3ω method , 1990 .

[85]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[86]  R. Prasher,et al.  Thermal conductivity of nanoscale colloidal solutions (nanofluids). , 2005, Physical review letters.

[87]  Saeed Zeinali Heris,et al.  EXPERIMENTAL INVESTIGATION OF CONVECTIVE HEAT TRANSFER OF AL2O3/WATER NANOFLUID IN CIRCULAR TUBE , 2007 .

[88]  Ping-Hei Chen,et al.  Effect of structural character of gold nanoparticles in nanofluid on heat pipe thermal performance , 2004 .

[89]  Yulong Ding,et al.  Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions , 2004 .

[90]  Haisheng Chen,et al.  Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe , 2007 .

[91]  Inaba Hideo,et al.  Experimental study of natural convection in an inclined air layer , 1984 .

[92]  Wenhua Yu,et al.  The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Hamilton–Crosser model , 2004 .

[93]  Q. Xue Model for effective thermal conductivity of nanofluids , 2003 .

[94]  Stephen U. S. Choi Enhancing thermal conductivity of fluids with nano-particles , 1995 .

[95]  Haisheng Chen,et al.  Rheological behaviour of ethylene glycol based titania nanofluids , 2007 .

[96]  Ranganathan Kumar,et al.  Role of ions in pool boiling heat transfer of pure and silica nanofluids , 2005 .

[97]  J. W. Goodwin,et al.  Rheology for Chemists: An Introduction , 2008 .

[98]  Y. Xuan,et al.  Investigation on Convective Heat Transfer and Flow Features of Nanofluids , 2003 .

[99]  A. Nagashima,et al.  ABSOLUTE MEASUREMENT OF THE THERMAL CONDUCTIVITY OF ELECTRICALLY CONDUCTING LIQUIDS BY THE TRANSIENT HOT-WIRE METHOD (THERMAL CONDUCTIVITY OF AN AQUEOUS NaCl SOLUTION AT HIGH PRESSURE). , 1981 .

[100]  Yulong Ding,et al.  Formulation of nanofluids for natural convective heat transfer applications , 2005 .

[101]  Tae-Keun Hong,et al.  Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles , 2006 .

[102]  N. Galanis,et al.  Heat transfer enhancement by using nanofluids in forced convection flows , 2005 .

[103]  W. Roetzel,et al.  Pool boiling characteristics of nano-fluids , 2003 .

[104]  Jung-Yeul Jung,et al.  Forced convective heat transfer of nanofluids in microchannels , 2009 .

[105]  Yulong Ding,et al.  Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids) , 2006 .

[106]  P. Keblinski,et al.  Effect of chemical functionalization on thermal transport of carbon nanotube composites , 2004 .

[107]  Arup Kumar Das,et al.  Pool boiling heat transfer characteristics of ZrO2–water nanofluids from a flat surface in a pool , 2008 .

[108]  C. Petrie,et al.  The rheology of fibre suspensions , 1999 .

[109]  K. Goodson,et al.  Thermal conductivity measurement and sedimentation detection of aluminum oxide nanofluids by using the 3ω method , 2008 .

[110]  D. Cahill,et al.  Nanofluids for thermal transport , 2005 .

[111]  Kwon,et al.  Unusually high thermal conductivity of carbon nanotubes , 2000, Physical review letters.

[112]  Robert H. Davis The effective thermal conductivity of a composite material with spherical inclusions , 1986 .

[113]  N. Wagner,et al.  The rheology and microstructure of acicular precipitated calcium carbonate colloidal suspensions through the shear thickening transition , 2005 .

[114]  K. Khanafer,et al.  BUOYANCY-DRIVEN HEAT TRANSFER ENHANCEMENT IN A TWO-DIMENSIONAL ENCLOSURE UTILIZING NANOFLUIDS , 2003 .

[115]  Sarit K. Das,et al.  Heat Transfer in Nanofluids—A Review , 2006 .

[116]  S. Edwards,et al.  Dynamics of concentrated polymer systems. Part 2.—Molecular motion under flow , 1978 .

[117]  Haisheng Chen,et al.  Forced convective heat transfer of nanofluids , 2007 .

[118]  R. Prasher,et al.  Enhanced mass transport in nanofluids. , 2006, Nano letters.

[119]  Haisheng Chen,et al.  Heat Transfer Intensification Using Nanofluids , 2007 .

[120]  Jungho Kim,et al.  Nanofluid boiling: The effect of surface wettability , 2008 .

[121]  W. Russel,et al.  Elastic properties of flocculated networks , 1987 .

[122]  R. Prasher,et al.  Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). , 2006, Nano letters.

[123]  Yulong Ding,et al.  Effect of particle migration on heat transfer in suspensions of nanoparticles flowing through minichannels , 2005 .

[124]  R. Prasher,et al.  Thermal conductance of nanofluids: is the controversy over? , 2008 .

[125]  C. T. Nguyen,et al.  Viscosity data for Al2O3-Water nanofluid - Hysteresis : is heat transfer enhancement using nanofluids reliable? , 2008 .

[126]  Sarit K. Das,et al.  Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects , 2003 .

[127]  Haisheng Chen,et al.  Predicting thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on rheology , 2009 .

[128]  Y. Xuan,et al.  Convective heat transfer and flow characteristics of Cu-water nanofluid , 2002, Science China Technological Sciences.

[129]  J. R. Abbott,et al.  A constitutive equation for concentrated suspensions that accounts for shear‐induced particle migration , 1992 .

[130]  Wenhua Yu,et al.  The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model , 2003 .

[131]  Chunqing Tan,et al.  Heat transfer and flow behaviour of aqueous suspensions of titanate nanotubes (nanofluids) , 2008 .

[132]  A. G. Agwu Nnanna,et al.  Thermal Transport Phenomena in Buoyancy-Driven Nanofluids , 2004 .

[133]  J. Eastman,et al.  Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles , 1999 .

[134]  H. Masuda,et al.  ALTERATION OF THERMAL CONDUCTIVITY AND VISCOSITY OF LIQUID BY DISPERSING ULTRA-FINE PARTICLES. DISPERSION OF AL2O3, SIO2 AND TIO2 ULTRA-FINE PARTICLES , 1993 .

[135]  Donggeun Lee,et al.  A new parameter to control heat transport in nanofluids: surface charge state of the particle in suspension. , 2006, The journal of physical chemistry. B.

[136]  D. Misra,et al.  Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture , 2007 .

[137]  Chongyoup Kim,et al.  VISCOSITY AND THERMAL CONDUCTIVITY OF COPPER OXIDE NANOFLUID DISPERSED IN ETHYLENE GLYCOL , 2005 .

[138]  D. W. Condiff,et al.  Transport mechanics in systems of orientable particles. IV. convective transport , 1974 .

[139]  O. K. Crosser,et al.  Thermal Conductivity of Heterogeneous Two-Component Systems , 1962 .

[140]  J. Fish,et al.  Role of Brownian motion hydrodynamics on nanofluid thermal conductivity , 2006 .

[141]  I. Mudawar,et al.  Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels , 2007 .

[142]  Hongwei Xie,et al.  Thermal Conductivity of Suspensions Containing Nanosized SiC Particles , 2002 .

[143]  Stephen U. S. Choi,et al.  Role of Brownian motion in the enhanced thermal conductivity of nanofluids , 2004 .

[144]  D. Jeffrey,et al.  Conduction through a random suspension of spheres , 1973, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[145]  I. Abdulagatov,et al.  Experimental Study of the Effect of Temperature, Pressure and Concentration on the Viscosity of Aqueous NaBr Solutions , 2006 .