Vacuum annealing effects in lithium niobate

Abstract A series of undoped LiNbO3 crystals have been subjected to heat treatments in a reducing atmosphere, i.e., a vacuum. Electron spin resonance spectra of Fe3+ and Mn2+ ions, infrared absorption of OH- molecules, and optical absorption peaking near 500 nm were observed to change as a function of annealing temperature. After reduction above 700°C, subsequent optical bleaching near 77 K significantly enhanced a Nb4+ electron spin resonance spectrum.

[1]  Alastair M. Glass,et al.  Control of the Susceptibility of Lithium Niobate to Laser‐Induced Refractive Index Changes , 1971 .

[2]  W. Bollmann,et al.  On the Disorder of LiNbO3 Crystals , 1972, January 16.

[3]  Y. Inuishi,et al.  Photoconduction, Thermally Stimulated Luminescence, and Optical Damage in Single Crystal of LiNbO3 , 1975 .

[4]  S. Hüfner,et al.  Photoelectron-spectroscopy investigation and electronic properties of LiNbO3 crystal surfaces , 1980 .

[5]  Y. M. Kim,et al.  Forbidden hyperfine lines in esr spectra of Mn2+: LiNbO3 , 1971 .

[6]  B. Dischler,et al.  An EPR investigation of Fe3+ and Mn2+ in LiNbO3 , 1972 .

[7]  R. Bartlett,et al.  High temperature transport processes in lithium niobate , 1969 .

[8]  Y. M. Kim,et al.  Electron‐Spin Resonance Studies of Crystal Field Parameters in Mn2+: LiNbO3 , 1972 .

[9]  A. Watanabe,et al.  Spacing of the hyperfine sextet in Mn2+ ESR in LiNbO3 , 1968 .

[10]  E. Kaldis Current Topics in Materials Science , 1980 .

[11]  H. H. Towner,et al.  EPR Studies of Crystal Field Parameters in Fe3+: LiNbO3 , 1972 .

[12]  J. R. Herrington,et al.  An optical study of the stretching absorption band near 3 microns from OH- defects in LiNbO3 , 1973 .

[13]  Electron energy levels in lithium niobate resulting from oxygen vacancies , 1981 .

[14]  B. A. Scott,et al.  Electron paramagnetic resonance of LiNbO3: Fe3+ , 1972 .

[15]  D. Linde,et al.  Two‐photon‐ and x‐ray‐induced Nb4+ and O− small polarons in LiNbO3 , 1978 .