Probability assessment of flood and sediment disasters in Japan using the Total Runoff-Integrating Pathways model

[1]  Taikan Oki,et al.  Assessing environmental improvement options from a water quality perspective for an urban-rural catchment , 2012, Environ. Model. Softw..

[2]  Taikan Oki,et al.  Long-term changes in flood event patterns due to changes in hydrological distribution parameters in a rural―urban catchment, Shikoku, Japan , 2011 .

[3]  S. Kanae,et al.  Development of a global flood risk index based on natural and socio-economic factors , 2011 .

[4]  Tomoharu Hori,et al.  Modeling reservoir sedimentation associated with an extreme flood and sediment flux in a mountainous granitoid catchment, Japan , 2011 .

[5]  Tomoharu Hori,et al.  Modeling shallow landslides and river bed variation associated with extreme rainfall-runoff events in a granitoid mountainous forested catchment in Japan , 2011 .

[6]  S. Kanae,et al.  Change of flood risk under climate change based on Discharge Probability Index in Japan , 2010 .

[7]  Taikan Oki,et al.  Estimation of total nitrogen transport and retention during flow in a catchment using a mass balance model incorporating the effects of land cover distribution and human activity information. , 2010, Water science and technology : a journal of the International Association on Water Pollution Research.

[8]  Taikan Oki,et al.  Modelling the catchment-scale environmental impacts of wastewater treatment in an urban sewage system for CO₂ emission assessment. , 2010, Water science and technology : a journal of the International Association on Water Pollution Research.

[9]  Zhijun Tong,et al.  Information diffusion-based spatio-temporal risk analysis of grassland fire disaster in northern China , 2010, Knowl. Based Syst..

[10]  E. P. Evans,et al.  Land use, water management and future flood risk. , 2009 .

[11]  S. Kanae,et al.  Integrated biogeochemical modelling of nitrogen load from anthropogenic and natural sources in Japan , 2009 .

[12]  R. Rosso,et al.  Use of a derived distribution approach for flood prediction in poorly gauged basins: A case study in Italy , 2009 .

[13]  C. P. Mancini,et al.  Selection of the probabilistic model of extreme floods: The case of the River Tiber in Rome , 2009 .

[14]  T. Oki,et al.  Investigating the roles of climate seasonality and landscape characteristics on mean annual and monthly water balances , 2008 .

[15]  K Hansson,et al.  A framework for evaluation of flood management strategies. , 2008, Journal of environmental management.

[16]  Eyke Hüllermeier,et al.  Risk assessment system of natural hazards: A new approach based on fuzzy probability , 2007, Fuzzy Sets Syst..

[17]  P. Claps,et al.  A comparison of homogeneity tests for regional frequency analysis , 2007 .

[18]  S. Kanae,et al.  Global Hydrological Cycles and World Water Resources , 2006, Science.

[19]  P. E. O'connell,et al.  IAHS Decade on Predictions in Ungauged Basins (PUB), 2003–2012: Shaping an exciting future for the hydrological sciences , 2003 .

[20]  Erich J. Plate,et al.  Flood risk and flood management , 2002 .

[21]  A. Loukas Flood frequency estimation by a derived distribution procedure , 2002 .

[22]  S. Kanae,et al.  Global assessment of current water resources using total runoff integrating pathways , 2001 .

[23]  Murugesu Sivapalan,et al.  Nonlinear propagation of multi-scale dynamics through hydrologic subsystems , 2001 .

[24]  S. Yue,et al.  A review of bivariate gamma distributions for hydrological application , 2001 .

[25]  Murugesu Sivapalan,et al.  Watershed groundwater balance estimation using streamflow recession analysis and baseflow separation , 1999 .

[26]  Taikan Oki,et al.  Assessment of Annual Runoff from Land Surface Models Using Total Runoff Integrating Pathways (TRIP) , 1999 .

[27]  Satish Chandra,et al.  Multivariate modeling of flood flows , 1998 .

[28]  Murugesu Sivapalan,et al.  Transformation of point rainfall to areal rainfall: Intensity-duration-frequency curves , 1998 .

[29]  Keith Beven,et al.  TOPMODEL : a critique. , 1997 .

[30]  Roman Krzysztofowicz,et al.  A bivariate meta-Gaussian density for use in hydrology , 1997 .

[31]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[32]  M. Woo,et al.  Probability studies of floods , 1986 .

[33]  Shigeki Kobatake,et al.  Runoff Model for Flood Forecasting , 1979 .

[34]  P. Todorovic,et al.  Stochastic models of floods , 1978 .

[35]  M. Leese,et al.  Use of censored data in the estimation of Gumbel distribution parameters for annual maximum flood series , 1973 .

[36]  E. J. Gumbel,et al.  Statistics of Extremes. , 1960 .

[37]  Dagmar Haase,et al.  Towards a flood risk assessment ontology - Knowledge integration into a multi-criteria risk assessment approach , 2013, Comput. Environ. Urban Syst..

[38]  V. Singh,et al.  On seasonal approach to nonstationary flood frequency analysis , 2009 .

[39]  Shinjiro Kanae,et al.  First estimate of the future global population at risk of flooding , 2009 .

[40]  Yuichi Sato,et al.  The development of flood vulnerability index applied to 114 major river basins around the world. , 2009 .

[41]  Taikan Oki,et al.  Toward flood risk prediction: a statistical approach using a 29-year river discharge simulation over Japan , 2008 .

[42]  J. Dutoit The Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) , 2007 .

[43]  Robert S. Chen,et al.  Natural Disaster Hotspots: A Global Risk Analysis , 2005 .

[44]  T. Oki,et al.  Design of Total Runoff Integrating Pathways (TRIP)—A Global River Channel Network , 1998 .

[45]  J. Stedinger Frequency analysis of extreme events , 1993 .

[46]  Keith Beven,et al.  Prophecy, reality and uncertainty in distributed hydrological modelling , 1993 .

[47]  E. Castillo Extreme value theory in engineering , 1988 .

[48]  Conleth Cunnane,et al.  Review of Statistical Models for Flood Frequency Estimation , 1987 .

[49]  Francisco Nunes Correia,et al.  Multivariate Partial Duration Series in Flood Risk Analysis , 1987 .