Metric Dimension for Random Graphs

The metric dimension of a graph $G$ is the minimum number of vertices in a subset $S$ of the vertex set of $G$ such that all other vertices are uniquely determined by their distances to the vertices in $S$. In this paper we investigate the metric dimension of the random graph $G(n,p)$ for a wide range of probabilities $p=p(n)$.

[1]  Sepp Hartung,et al.  On the Parameterized and Approximation Hardness of Metric Dimension , 2012, 2013 IEEE Conference on Computational Complexity.

[2]  Mathias Hauptmann,et al.  On Approximation Complexity of Metric Dimension Problem , 2010, IWOCA.

[3]  P. Cameron,et al.  Base size, metric dimension and other invariants of groups and graphs , 2011 .

[4]  Alan M. Frieze,et al.  Codes identifying sets of vertices in random networks , 2007, Discret. Math..

[5]  Paul Erdös,et al.  Random Graph Isomorphism , 1980, SIAM J. Comput..

[6]  S. Janson New versions of Suen's correlation inequality , 1998 .

[7]  N. Duncan Leaves on trees , 2014 .

[8]  Béla Bollobás,et al.  Random Graphs , 1985 .

[9]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[10]  Gary Chartrand,et al.  Resolvability in graphs and the metric dimension of a graph , 2000, Discret. Appl. Math..

[11]  Erik Jan van Leeuwen,et al.  On the Complexity of Metric Dimension , 2011, ESA.

[12]  David R. Wood,et al.  Extremal Graph Theory for Metric Dimension and Diameter , 2007, Electron. J. Comb..

[13]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[14]  Thomas Erlebach,et al.  Network Discovery and Verification , 2005, IEEE Journal on Selected Areas in Communications.

[15]  Azriel Rosenfeld,et al.  Landmarks in Graphs , 1996, Discret. Appl. Math..

[16]  David R. Wood,et al.  On the Metric Dimension of Cartesian Products of Graphs , 2005, SIAM J. Discret. Math..

[17]  Guillem Perarnau,et al.  Bounds for Identifying Codes in Terms of Degree Parameters , 2011, Electron. J. Comb..

[18]  Delia Garijo,et al.  On determining number and metric dimension of graphs , 2007 .

[19]  Béla Bollobás,et al.  The Diameter of Random Graphs , 1981 .

[20]  Stephen Suen,et al.  A correlation inequality and a Poisson limit theorem for nonoverlapping balanced subgraphs of a random graph , 1990, Random Struct. Algorithms.

[21]  Djoko Suprijanto,et al.  THE METRIC DIMENSION OF A GRAPH COMPOSITION PRODUCTS WITH STAR , 2012 .

[22]  Jean-Sébastien Sereni,et al.  Identifying and Locating-Dominating Codes in (Random) Geometric Networks , 2009, Comb. Probab. Comput..

[23]  Mathias Hauptmann,et al.  Approximation complexity of Metric Dimension problem , 2012, J. Discrete Algorithms.