Goal-oriented preservation of essential genetic information by offspring selection

This contribution proposes an enhanced and generic selection model for Genetic Algorithms (GAs) and Genetic Programming (GP) which is able to preserve the alleles which are part of a high quality solution. Some selected aspects of these enhanced techniques are discussed exemplarily on the basis of standardized benchmark problems.

[1]  Yukiko Yoshida,et al.  A Diploid Genetic Algorithm for Preserving Population Diversity - pseudo-Meiosis GA , 1994, PPSN.

[2]  Pedro Larrañaga,et al.  Genetic Algorithms for the Travelling Salesman Problem: A Review of Representations and Operators , 1999, Artificial Intelligence Review.

[3]  Michael Affenzeller,et al.  SASEGASA: An Evolutionary Algorithm for Retarding Premature Convergence by Self-adaptive Selection Pressure Steering , 2003, IWANN.

[4]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[5]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[6]  David B. Fogel,et al.  An introduction to simulated evolutionary optimization , 1994, IEEE Trans. Neural Networks.

[7]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[8]  S. Domek,et al.  A generic evolutionary computation approach based upon genetic algorithms and evolution strategies , 2002 .

[9]  Michael Affenzeller,et al.  Segregative Genetic Algorithms (SEGA): A hybrid superstructure upwards compatible to genetic algorithms for retarding premature convergence , 2001, Int. J. Comput. Syst. Signals.

[10]  Michael Affenzeller,et al.  SASEGASA: A New Generic Parallel Evolutionary Algorithm for Achieving Highest Quality Results , 2004, J. Heuristics.

[11]  Eberhard Schöneburg,et al.  Genetische Algorithmen und Evolutionsstrategien - eine Einführung in Theorie und Praxis der simulierten Evolution , 1994 .

[12]  Michael Affenzeller A GENERIC EVOLUTIONARY COMPUTATION APPROACH BASED UPON GENETIC ALGORITHMS AND EVOLUTION STRATEGIES , 2003 .

[13]  Stephan M. Winkler,et al.  New methods for the identification of nonlinear model structures based upon genetic programming techniques , 2005 .

[14]  Stephan M. Winkler,et al.  Identifying Nonlinear Model Structures Using Genetic Programming Techniques , 2007 .

[15]  Gerhard Reinelt,et al.  TSPLIB - A Traveling Salesman Problem Library , 1991, INFORMS J. Comput..

[16]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[17]  D. J. Cavicchio,et al.  Adaptive search using simulated evolution , 1970 .

[18]  Michael Affenzeller,et al.  Applying Genetic Algorithms to the Optimization of Production Planning in a Real-World Manufacturing Environment , 2007 .

[19]  Michael Affenzeller,et al.  HeuristicLab: A Generic and Extensible Optimization Environment , 2005 .

[20]  Alan S. Perelson,et al.  Population Diversity in an Immune System Model: Implications for Genetic Search , 1992, FOGA.

[21]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .