Multiobjective identification of Takagi-Sugeno fuzzy models

The problem of identifying the parameters of the constituent local linear models of Takagi-Sugeno fuzzy models is considered. In order to address the tradeoff between global model accuracy and interpretability of the local models as linearizations of a nonlinear system, two multiobjective identification algorithms are studied. Particular attention is paid to the analysis of conflicts between objectives, and we show that such information can be easily computed from the solution of the multiobjective optimization. This information is useful to diagnose the model and tune the weighting/priorities of the multiobjective optimization. Moreover, the result of the conflict analysis can be used as a constructive tool to modify the fuzzy model structure (including membership functions) in order to meet the multiple objectives. Simple illustrative examples as well as experimental results show the usefulness of the method.

[1]  Robert Babuska,et al.  Fuzzy model-based predictive control using Takagi-Sugeno models , 1999, Int. J. Approx. Reason..

[2]  Robert Shorten,et al.  On the interpretation and identification of dynamic Takagi-Sugeno fuzzy models , 2000, IEEE Trans. Fuzzy Syst..

[3]  Anton F. M. Verbraak,et al.  Estimation of respiratory parameters via fuzzy clustering , 2001, Artif. Intell. Medicine.

[4]  D. Passaquay,et al.  Performance evaluation of a fuzzy rule base for control purpose , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[5]  M. Sugeno,et al.  Structure identification of fuzzy model , 1988 .

[6]  E. Polak Introduction to linear and nonlinear programming , 1973 .

[7]  J. Abonyi,et al.  Local and global identification and interpretation of parameters in Takagi-Sugeno fuzzy models , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[8]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[9]  F Chabot,et al.  Respiratory mechanics studied by multiple linear regression in unsedated ventilated patients. , 1992, The European respiratory journal.

[10]  Robert Shorten,et al.  On the interpretation of local models in blended multiple model structures. , 1999 .

[11]  T. A. Johansen,et al.  Robust identification of Takagi-Sugeno-Kang fuzzy models using regularization , 1996, Proceedings of IEEE 5th International Fuzzy Systems.

[12]  Tor Arne Johansen,et al.  Identification of non-linear system structure and parameters using regime decomposition , 1995, Autom..

[13]  Robert Babuska,et al.  Fuzzy Modeling for Control , 1998 .

[14]  J. Bates,et al.  Estimation of time-varying respiratory mechanical parameters by recursive least squares. , 1991, Journal of applied physiology.

[15]  Tor Arne Johansen,et al.  Local learning in local model networks , 1995 .

[16]  Robert Babuska,et al.  Fuzzy model based predictive control by using takagi-sugeno fuzzy models , 1999 .

[17]  Tor Arne Johansen,et al.  Engine load prediction in off-road vehicles using multi-objective nonlinear identification , 2004 .

[18]  Ferenc Szeifert,et al.  Incorporating prior knowledge in fuzzy model identification , 2000, Int. J. Syst. Sci..

[19]  T. Johansen Multi-Objective Identification of FIR Models , 2000 .

[20]  Tor Arne Johansen,et al.  Design and analysis of gain-scheduled control using local controller networks , 1997 .

[21]  Yaochu Jin,et al.  Fuzzy modeling of high-dimensional systems: complexity reduction and interpretability improvement , 2000, IEEE Trans. Fuzzy Syst..

[22]  T. Johansen,et al.  On transient dynamics, off-equilibrium behaviour and identification in blended multiple model structures , 1999, 1999 European Control Conference (ECC).

[23]  Rolf Isermann,et al.  Predictive control based on local linear fuzzy models , 1998, Int. J. Syst. Sci..

[24]  T. Johansen,et al.  Constructing NARMAX models using ARMAX models , 1993 .

[25]  John Yen,et al.  Improving the interpretability of TSK fuzzy models by combining global learning and local learning , 1998, IEEE Trans. Fuzzy Syst..

[26]  Aníbal Ollero,et al.  Fuzzy Methodologies for Interactive Multicriteria Optimization , 1980, IEEE Transactions on Systems, Man, and Cybernetics.