Design, specifications, and first beam measurements of the compact linear accelerator for research and applications front end

The compact linear accelerator for research and applications (CLARA) is an ultrabright electron beam test facility being developed at STFC Daresbury Laboratory. The ultimate aim of CLARA is to test advanced free electron laser (FEL) schemes that can later be implemented on existing and future short-wavelength FELs. In addition, CLARA is a unique facility to provide a high-quality electron beam to test novel concepts and ideas in a wide range of disciplines and to function as a technology demonstrator for a future United Kingdom x-ray FEL facility. CLARA is being built in three phases; the first phase, or front end (FE), comprises an S-band rf photoinjector, a linac, and an S-bend merging with the existing versatile electron linear accelerator beam line; the second phase will complete the acceleration to full beam energy of 250 MeV and also incorporate a separate beam line for use of electrons at 250 MeV; and the third phase will include the FEL section. The CLARA FE was commissioned during 2018, and the facility was later made available for user experiments. Significant advancements have been made in developing high-level software and a simulation framework for start-to-end simulations. The high-level software has been successfully used for unmanned rf conditioning and for characterization of the electron beam. This paper describes the design of the CLARA FE, performance of technical systems, high-level software developments, preliminary results of measured beam parameters, and plans for improvements and upgrades. © 2020 authors. Published by the American Physical Society.

Graeme Burt | James Jones | Thomas Jones | Mark Hancock | James Henderson | Deepa Angal-Kalinin | Graham Cox | K. J. Middleman | Boris Militsyn | Tim Noakes | M. D. Roper | B. J. A. Shepherd | Alan Wheelhouse | M. King | Julian McKenzie | Neil Thompson | Barry Fell | F. Jackson | A. Vick | Andrzej Wolski | Peter Williams | Andrew Moss | Reza Valizadeh | Yuri Saveliev | Alexander Brynes | D. J. Scott | P. W. Heath | A. Bainbridge | Rachael Buckley | S. Buckley | Ryan Cash | H. M. Castaneda Cortes | D. C. Christie | J. A. Clarke | Rory Clarke | Louise Cowie | P. Corlett | Keith Dumbell | David Dunning | K. Gleave | P. Goudket | Andrew Goulden | Stephen Griffiths | A. Hannah | T. Hartnett | C. Hill | P. Hindley | C. Hodgkinson | P. Hornickel | N. Joshi | S. H. Kinder | N. J. Knowles | H. Kockelbergh | Kiril Borisov Marinov | Storm Mathisen | Bruno Muratori | W. Okell | Adrian Oates | Thomas Pacey | V. V. Paramanov | R. J. Smith | W. Smith | Edward W. Snedden | C. Tollervey | David Walsh | T. Weston | J. T. G. Wilson | D. Angal-Kalinin | F. Jackson | D. Scott | G. Burt | J. Clarke | P. Goudket | W. Okell | K. Gleave | N. Joshi | A. Bainbridge | B. Shepherd | A. Hannah | B. Militsyn | R. Valizadeh | P. Williams | Y. Saveliev | D. Dunning | N. Thompson | M. Roper | S. Griffiths | A. Moss | A. Oates | R. Buckley | S. Buckley | P. Corlett | G. Cox | B. Fell | A. Goulden | C. Hill | P. Hindley | K. Middleman | T. Weston | A. Wheelhouse | J. Mckenzie | R. Cash | L. Cowie | K. Marinov | E. Snedden | K. Dumbell | T. Hartnett | D. Walsh | M. King | A. Brynes | A. Wolski | J. Henderson | S. Kinder | T. Pacey | B. Muratori | T. Jones | M. Hancock | P. Heath | N. Knowles | H. Kockelbergh | D. Christie | S. Mathisen | R. J. Smith | T. Noakes | W. Smith | P. Hornickel | H. M. Castañeda Cortés | R. Clarke | C. Hodgkinson | J. Jones | V. Paramanov | C. Tollervey | A. Vick | J. T. G. Wilson | R. J. Smith | J. T. G. Wilson

[1]  G. N. Minerbo,et al.  MENT: A maximum entropy algorithm for reconstructing a source from projection data , 1979 .

[2]  K. Floettmann,et al.  Generation of sub-fs electron beams at few-MeV energies , 2014 .

[3]  M. Ferrario,et al.  Nano-machining, surface analysis and emittance measurements of a copper photocathode at SPARC_LAB , 2018, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[4]  Alex Murokh,et al.  Bunch length measurement of picosecond electron beams from a photoinjector using coherent transition radiation , 1998 .

[5]  Ilan Ben-Zvi,et al.  Electron beam phase-space measurement using a high-precision tomography technique , 2003 .

[6]  P. O'Shea,et al.  Phase space tomography of relativistic electron beams , 1995 .

[7]  Atsushi Ogata,et al.  Measurement of<20fsbunch length using coherent transition radiation , 2014 .

[8]  V Yakimenko,et al.  Experimental observation of energy modulation in electron beams passing through terahertz dielectric wakefield structures. , 2012, Physical review letters.

[9]  Daniele Filippetto,et al.  Knife-edge based measurement of the 4D transverse phase space of electron beams with picometer-scale emittance , 2019, Physical Review Accelerators and Beams.

[10]  Graeme Burt,et al.  CLARA conceptual design report , 2014 .

[11]  Henrik Loos,et al.  Commissioning the LCLS Injector , 2008 .

[12]  R. A. Kishek,et al.  Tomography as a diagnostic tool for phase space mapping of intense particle beams , 2006 .

[13]  Rasmus Ischebeck,et al.  Transverse profile imager for ultrabright electron beams , 2015 .

[14]  Brendan O'Shea,et al.  Machine learning-based longitudinal phase space prediction of particle accelerators , 2018, Physical Review Accelerators and Beams.

[15]  Andrzej Wolski,et al.  Alternative approach to general coupled linear optics , 2006 .

[16]  Shivaji Pande,et al.  Design of a high repetition rate S-band photocathode gun , 2011 .

[17]  P. Craievich,et al.  Optimization of a high brightness photoinjector for a seeded FEL facility , 2013 .

[18]  I. Haber,et al.  Tomographic phase-space mapping of intense particle beams using solenoids , 2007 .

[19]  Chunguang Jing,et al.  Experimental demonstration of the correction of coupled-transverse-dynamics aberration in an rf photoinjector , 2019, Physical Review Accelerators and Beams.

[20]  Michael Borland,et al.  Simple method for particle tracking with coherent synchrotron radiation , 2001 .

[21]  M. Dach,et al.  Commissioning experience and beam physics measurements at the SwissFEL Injector Test Facility , 2016, 1606.02586.

[22]  Walter Wuensch,et al.  Comparison of the conditioning of High Gradient Accelerating Structures , 2016 .

[23]  Yingchao Du,et al.  Transverse phase space tomography using a solenoid applied to a thermal emittance measurement , 2009 .

[24]  Walter Wuensch,et al.  Statistics of vacuum breakdown in the high-gradient and low-rate regime , 2017 .

[25]  X. L. Guan,et al.  Transverse profile tomography of a high current proton beam with a multi-wire scanner , 2018, Physical Review Accelerators and Beams.

[26]  Alvaro Sanchez-Gonzalez,et al.  Accurate prediction of X-ray pulse properties from a free-electron laser using machine learning , 2017, Nature Communications.

[27]  J. Crisp,et al.  Tevatron Resistive Wall Current Monitor , 2011 .

[28]  E Allaria,et al.  Beyond the limits of 1D coherent synchrotron radiation , 2018, New Journal of Physics.

[29]  Barbara Marchetti,et al.  Electron-beam manipulation techniques in the SINBAD Linac for external injection in plasma wake-field acceleration , 2016 .

[30]  Bernhard Schmidt,et al.  Time-Resolved Electron Beam Phase Space Tomography at a Soft X-Ray Free-Electron Laser , 2009 .

[31]  Howard A. Padmore,et al.  Cathode R&D for future light sources , 2010 .

[32]  D. Edstrom,et al.  Neural Networks for Modeling and Control of Particle Accelerators , 2016, IEEE Transactions on Nuclear Science.

[33]  S. Gessner,et al.  Commissioning of the electron injector for the AWAKE experiment , 2020, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[34]  Bruno Muratori,et al.  Beam tomography in transverse normalised phase space , 2011 .

[35]  Massimo Ferrario,et al.  Velocity Bunching in Photo-Injectors , 2001 .

[36]  C. T. Mottershead,et al.  Maximum Entropy Beam Diagnostic Tomography , 1985, IEEE Transactions on Nuclear Science.

[37]  Andrzej Wolski,et al.  Tomographic reconstruction of the full 4D transverse phase space , 2013 .

[38]  E. Chevallay,et al.  Production of long bunch trains with 4.5 μ C total charge using a photoinjector , 2012 .