Progress in the clinical development and utilization of vision prostheses: an update

Vision prostheses, or “bionic eyes”, are implantable medical bionic devices with the potential to restore rudimentary sight to people with profound vision loss or blindness. In the past two decades, this field has rapidly progressed, and there are now two commercially available retinal prostheses in the US and Europe, and a number of next-generation devices in development. This review provides an update on the development of these devices and a discussion on the future directions for the field.

[1]  Jessy D. Dorn,et al.  The Argus II epiretinal prosthesis system allows letter and word reading and long-term function in patients with profound vision loss , 2013, British Journal of Ophthalmology.

[2]  Arthur James Lowery,et al.  Restoration of vision in blind individuals using bionic devices: A review with a focus on cortical visual prostheses , 2015, Brain Research.

[3]  Jessy D. Dorn,et al.  FLORA™: Phase I development of a functional vision assessment for prosthetic vision users , 2015, Clinical & experimental optometry.

[4]  A. Dale,et al.  Functional analysis of primary visual cortex (V1) in humans. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Eberhart Zrenner,et al.  Fighting Blindness with Microelectronics , 2013, Science Translational Medicine.

[6]  Jessy D. Dorn,et al.  Preliminary 6 month results from the argustm ii epiretinal prosthesis feasibility study , 2009, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[7]  Eberhart Zrenner,et al.  Functional outcome in subretinal electronic implants depends on foveal eccentricity. , 2013, Investigative ophthalmology & visual science.

[8]  L. Merabet,et al.  What blindness can tell us about seeing again: merging neuroplasticity and neuroprostheses , 2005, Nature Reviews Neuroscience.

[9]  Gerald Liew,et al.  A comparison of the causes of blindness certifications in England and Wales in working age adults (16–64 years), 1999–2000 with 2009–2010 , 2014, BMJ Open.

[10]  W. H. Dobelle Artificial vision for the blind by connecting a television camera to the visual cortex. , 2000, ASAIO journal.

[11]  Bernard P Lepri Is acuity enough? Other considerations in clinical investigations of visual prostheses. , 2009, Journal of neural engineering.

[12]  Jessy D. Dorn,et al.  Interim results from the international trial of Second Sight's visual prosthesis. , 2012, Ophthalmology.

[13]  B. Wilhelm,et al.  Subretinal Visual Implant Alpha IMS – Clinical trial interim report , 2015, Vision Research.

[14]  Spencer C. Chen,et al.  Simulating prosthetic vision: I. Visual models of phosphenes , 2009, Vision Research.

[15]  Hamish Meffin,et al.  Prosthetic vision: devices, patient outcomes and retinal research , 2015, Clinical & experimental optometry.

[16]  Chris E. Williams,et al.  Cortical activation following chronic passive implantation of a wide-field suprachoroidal retinal prosthesis , 2014, Journal of neural engineering.

[17]  Chris E. Williams,et al.  First-in-Human Trial of a Novel Suprachoroidal Retinal Prosthesis , 2014, PloS one.

[18]  Gislin Dagnelie,et al.  Understanding the origin of visual percepts elicited by electrical stimulation of the human retina , 1999, Graefe's Archive for Clinical and Experimental Ophthalmology.

[19]  Arthur James Lowery,et al.  Characteristics of electrode impedance and stimulation efficacy of a chronic cortical implant using novel annulus electrodes in rat motor cortex , 2013, Journal of neural engineering.

[20]  Andrew K. Wise,et al.  Chronic Electrical Stimulation with a Suprachoroidal Retinal Prosthesis: A Preclinical Safety and Efficacy Study , 2014, PloS one.

[21]  Benoît Gérard,et al.  Pattern recognition with the optic nerve visual prosthesis. , 2003, Artificial organs.

[22]  Robert J Greenberg,et al.  Temporal interactions during paired-electrode stimulation in two retinal prosthesis subjects. , 2011, Investigative ophthalmology & visual science.

[23]  Alfred Stett,et al.  Subretinal electronic chips allow blind patients to read letters and combine them to words , 2010, Proceedings of the Royal Society B: Biological Sciences.

[24]  Christopher Fisher,et al.  Clinical Tests of Ultra-Low Vision Used to Evaluate Rudimentary Visual Perceptions Enabled by the BrainPort Vision Device. , 2013, Translational vision science & technology.

[25]  Hugh J. McDermott,et al.  Factors affecting perceptual thresholds in a suprachoroidal retinal prosthesis. , 2014, Investigative ophthalmology & visual science.

[26]  Joseph F. Rizzo,et al.  Psychophysical testing of visual prosthetic devices: a call to establish a multi-national joint task force , 2014, Journal of neural engineering.

[27]  Kurt Löwenstein,et al.  Symptomatologie und elektrische Reizung bei einer Schußverletzung des Hinterhauptlappens , 1918, Deutsche Zeitschrift für Nervenheilkunde.

[28]  Visual Sensation by Electrical Stimulation Using a New Direct Optic Nerve Electrode Device , 2015, Brain Stimulation.

[29]  A. Milam,et al.  Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa. , 1999, Investigative ophthalmology & visual science.

[30]  Angelika Braun,et al.  Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS , 2013, Proceedings of the Royal Society B: Biological Sciences.

[31]  Y. Luo,et al.  A review and update on the current status of retinal prostheses (bionic eye). , 2014, British medical bulletin.

[32]  J. L. Stone,et al.  Morphometric analysis of macular photoreceptors and ganglion cells in retinas with retinitis pigmentosa. , 1992, Archives of ophthalmology.

[33]  Alice K. Cho,et al.  Retinal prostheses: current clinical results and future needs. , 2011, Ophthalmology.

[34]  Jessy D. Dorn,et al.  Long-Term Results from an Epiretinal Prosthesis to Restore Sight to the Blind. , 2015, Ophthalmology.

[35]  A. Y. Chow,et al.  Subretinal implantation of semiconductor-based photodiodes: progress and challenges. , 1999, Journal of rehabilitation research and development.

[36]  Alex R. Wade,et al.  Two-dimensional mapping of the central and parafoveal visual field to human visual cortex. , 2007, Journal of neurophysiology.

[37]  J. Weiland,et al.  Pattern electrical stimulation of the human retina , 1999, Vision Research.

[38]  Thomas Laube,et al.  Acute electrical stimulation of the human retina with an epiretinal electrode array , 2012, Acta ophthalmologica.

[39]  R. Hornig,et al.  Visual Perception After Long-Term Implantation of a Retinal Implant , 2008 .

[40]  Eberhart Zrenner,et al.  Safety evaluation of “retina implant alpha IMS”—a prospective clinical trial , 2015, Graefe's Archive for Clinical and Experimental Ophthalmology.

[41]  Richard T. Born,et al.  Cortical magnification plus cortical plasticity equals vision? , 2015, Vision Research.

[42]  Jean Delbeke,et al.  Measurement of evoked potentials after electrical stimulation of the human optic nerve. , 2010, Investigative ophthalmology & visual science.

[43]  Jessy D. Dorn,et al.  Factors Affecting Perceptual Threshold in Argus II Retinal Prosthesis Subjects. , 2013, Translational vision science & technology.

[44]  E. Zrenner,et al.  Electrical multisite stimulation of the isolated chicken retina , 2000, Vision Research.

[45]  P.R. Troyk,et al.  Some Solutions to Technical Hurdles for Developing a Practical Intracortical Visual Prosthesis Device , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[46]  G. Brindley,et al.  The sensations produced by electrical stimulation of the visual cortex , 1968, The Journal of physiology.

[47]  Takashi Fujikado,et al.  Clinical Trial of Chronic Implantation of Suprachoroidal-Transretinal Stimulation System for Retinal Prosthesis , 2012 .