Luminescence studies and EPR investigation of solution combustion derived Eu doped ZnO.

ZnO:Eu (0.1 mol%) nanopowders have been synthesized by auto ignition based low temperature solution combustion method. Powder X-ray diffraction (PXRD) patterns confirm the nanosized particles which exhibit hexagonal wurtzite structure. The crystallite size estimated from Scherrer's formula was found to be in the range 35-39 nm. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies reveal particles are agglomerated with quasi-hexagonal morphology. A blue shift of absorption edge with increase in band gap is observed for Eu doped ZnO samples. Upon 254 nm excitation, ZnO:Eu nanopowders show peaks in regions blue (420-484 nm), green (528 nm) and red (600 nm) which corresponds to both Eu2+ and Eu3+ ions. The electron paramagnetic resonance (EPR) spectrum exhibits a broad resonance signal at g=4.195 which is attributed to Eu2+ ions. Further, EPR and thermoluminescence (TL) studies reveal presence of native defects in this phosphor. Using TL glow peaks the trap parameters have been evaluated and discussed.

[1]  P. Limsuwan,et al.  Improvement of optical properties of nanocrystalline Fe-doped ZnO powders through precipitation method from citrate-modified zinc nitrate solution , 2009 .

[2]  K. Okuyama,et al.  The crystallinity and the photoluminescent properties of spray pyrolized ZnO phosphor containing Eu2+ and Eu3+ ions , 2004 .

[3]  V. Castaño,et al.  Thermally stimulated luminescence of new ZnO–CdSO4 exposed to beta radiation , 2007 .

[4]  John A. Weil,et al.  Electron paramagnetic resonance : elementary theory and practical applications , 1995 .

[5]  Yunxin Liu,et al.  White upconversion of rare-earth doped ZnO nanocrystals and its dependence on size of crystal particles and content of Yb3+ and Tm3+ , 2009 .

[6]  S. Kulkarni,et al.  Investigations of white light emitting europium doped zinc oxide nanoparticles , 2008 .

[7]  M. Öztaş Characteristics of annealed ZnO:Cu nanoparticles prepared by spray pyrolysis , 2006 .

[8]  A. Srivastava,et al.  Induced thermoluminescence of X-ray irradiated nanostructured zinc oxide , 2009 .

[9]  Titas Dutta,et al.  On the sol–gel synthesis and thermal, structural, and magnetic studies of transition metal (Ni, Co, Mn) containing ZnO powders , 2006 .

[10]  R. N. Bhargava,et al.  Quantum Confined Atoms of Doped ZnO Nanocrystals , 2002 .

[11]  L. Jing,et al.  The preparation and characterization of ZnO ultrafine particles , 2002 .

[12]  Q. Su,et al.  The valence change from RE3+ to RE2+ (REEu, Sm, Yb) in SrB4O7: RE prepared in air and the spectral properties of RE2+ , 1993 .

[13]  K. C. Patil,et al.  Synthesis and properties of $Eu^{2+}$ activated blue phosphors , 1997 .

[14]  H. B. Premkumar,et al.  Synthesis, characterization and photoluminescence properties of CaSiO3 : Dy3+ nanophosphors , 2010 .

[15]  M. Sima,et al.  Photoluminescence and thermoluminescence of ZnO nano-needle arrays and films , 2009 .

[16]  Yichun Liu,et al.  Synthesis and luminescence properties of Eu3+-doped ZnO nanocrystals by a hydrothermal process , 2007 .

[17]  M. Jayaraj,et al.  Red luminescence from hydrothermally synthesized Eu-doped ZnO nanoparticles under visible excitation , 2010 .

[18]  Bin Liu,et al.  Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. , 2003, Journal of the American Chemical Society.

[19]  Y. Horowitz,et al.  Theory of heavy charged particle response (efficiency and supralinearity) in TL materials , 2001 .

[20]  F. Singh,et al.  Thermoluminescence studies in swift heavy ion irradiated aluminum oxide , 2008 .

[21]  F. Gan,et al.  Electron spin resonance properties of ZnO microcrystallites , 1998 .

[22]  P. D. Sahare,et al.  Thermoluminescence of nanocrystalline LiF:Mg, Cu, P , 2007 .

[23]  M. Cocivera,et al.  Preparation and doping of zinc oxide using spray pyrolysis , 1995 .

[24]  Y. Horowitz,et al.  The unified interaction model applied to the gamma ray induced supralinearity and sensitization of peak 5 in LiF:Mg,Ti (TLD-100) , 1997 .

[25]  H. Ohta,et al.  Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor , 2003, Science.

[26]  A. Ng,et al.  ZnO nanostructures for optoelectronics: Material properties and device applications , 2010 .

[27]  S. Burruel-Ibarra,et al.  THERMOLUMINESCENCE PROPERTIES OF NEW ZNO NANOPHOSPHORS EXPOSED TO BETA IRRADIATION , 2005 .

[28]  G. Adachi,et al.  Luminescence properties of Eu(II)-borates and Eu2+- activated Sr-Borates , 1979 .

[29]  H. Morkoç,et al.  A COMPREHENSIVE REVIEW OF ZNO MATERIALS AND DEVICES , 2005 .

[30]  B. Bag,et al.  Probing the surface states in nano ZnO powder synthesized by sonication method: Photo and thermo-luminescence studies , 2010 .

[31]  H. T. Chen,et al.  Size control of ZnO nanoparticles via thermal decomposition of zinc acetate coated on organic additives , 2004 .

[32]  V. Sudarsan,et al.  Probing of surface Eu3+ ions present in ZnO:Eu nanoparticles by covering ZnO:Eu core with Y2O3 shell : Luminescence study , 2008 .

[33]  Jonathan C. Knowles,et al.  Speciation and the nature of ZnO thin films from chemical bath deposition , 1996 .

[34]  Shenggang Yan,et al.  Low-temperature synthesis of ZnO nanoparticles by solid-state pyrolytic reaction , 2002 .