Ryngo 1-23 Enhances the Uptake of Polymer-Encapsulated Nanoparticles by Nonphagocytic Cells

[1]  M. Artemyev,et al.  Poly(maleic anhydride) shell modified with negatively and positively charged groups to control zeta potential and hydrodynamic size of encapsulated quantum dots at variable pH , 2022, ChemNanoMat.

[2]  Siyu Chen,et al.  Targeted Delivery of Drugs and Genes Using Polymer Nanocarriers for Cancer Therapy , 2021, International journal of molecular sciences.

[3]  B. Rothen‐Rutishauser,et al.  Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine , 2021, Chemical Society reviews.

[4]  Deepak Chitkara,et al.  Exploration and insights into the cellular internalization and intracellular fate of amphiphilic polymeric nanocarriers , 2021, Acta pharmaceutica Sinica. B.

[5]  Justin W. Taraska,et al.  Energy and Dynamics of Caveolae Trafficking , 2021, Frontiers in Cell and Developmental Biology.

[6]  S. Hamm-Alvarez,et al.  Application of advances in endocytosis and membrane trafficking to drug delivery. , 2020, Advanced drug delivery reviews.

[7]  M. Artemyev,et al.  Emitters with different dimensionality: 2D cadmium chalcogenide nanoplatelets and 0D quantum dots in non-specific cell labeling and two-photon imaging , 2020, Nanotechnology.

[8]  R. Jain,et al.  Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges , 2020, Nature Reviews Clinical Oncology.

[9]  B. Ahmad,et al.  Effect of tetracycline family of antibiotics on actin aggregation, resulting in the formation of Hirano bodies responsible for neuropathological disorders , 2020, Journal of biomolecular structure & dynamics.

[10]  Oliver S. Thomas,et al.  Overcoming Physiological Barriers to Nanoparticle Delivery—Are We There Yet? , 2019, Front. Bioeng. Biotechnol..

[11]  Thomas P. Davis,et al.  A pH-responsive nanoparticle targets the neurokinin 1 receptor in endosomes to prevent chronic pain , 2019, Nature Nanotechnology.

[12]  Marcel Mettlen,et al.  Regulation of Clathrin-Mediated Endocytosis. , 2018, Annual review of biochemistry.

[13]  M. Kreft,et al.  Dynamin regulates the fusion pore of endo- and exocytotic vesicles as revealed by membrane capacitance measurements. , 2017, Biochimica et biophysica acta. General subjects.

[14]  S. Schmid,et al.  TRAIL-death receptor endocytosis and apoptosis are selectively regulated by dynamin-1 activation , 2017, Proceedings of the National Academy of Sciences.

[15]  S. Schmid,et al.  Identification and function of conformational dynamics in the multidomain GTPase dynamin , 2016, The EMBO journal.

[16]  Mauro Ferrari,et al.  Principles of nanoparticle design for overcoming biological barriers to drug delivery , 2015, Nature Biotechnology.

[17]  F. Aguet,et al.  Crosstalk between Akt/GSK3β signaling and dynamin‐1 regulates clathrin‐mediated endocytosis , 2015, The EMBO journal.

[18]  I. M. Sheldon,et al.  Dynasore - not just a dynamin inhibitor , 2015, Cell Communication and Signaling.

[19]  B. Hyman,et al.  Regulation of Dynamin Oligomerization in Cells: The Role of Dynamin–Actin Interactions and Its GTPase Activity , 2014, Traffic.

[20]  M. Meister,et al.  Role of dynamin and clathrin in the cellular trafficking of flotillins , 2014, The FEBS journal.

[21]  V. Haucke,et al.  BAR Domain Scaffolds in Dynamin-Mediated Membrane Fission , 2014, Cell.

[22]  P. De Camilli,et al.  Dynamin triple knockout cells reveal off target effects of commonly used dynamin inhibitors , 2013, Journal of Cell Science.

[23]  Pietro De Camilli,et al.  Dynamin, a membrane-remodelling GTPase , 2012, Nature Reviews Molecular Cell Biology.

[24]  M. Nonnenmacher,et al.  Adeno-associated virus 2 infection requires endocytosis through the CLIC/GEEC pathway. , 2011, Cell host & microbe.

[25]  N. Bache,et al.  Dynamin I phosphorylation by GSK3 controls activity-dependent bulk endocytosis of synaptic vesicles , 2010, Nature Neuroscience.

[26]  M. Graham,et al.  Azido and Diazarinyl Analogues of Bis‐Tyrphostin as Asymmetrical Inhibitors of Dynamin GTPase , 2009, ChemMedChem.

[27]  Ute Resch-Genger,et al.  Determination of the Fluorescence Quantum Yield of Quantum Dots: Suitable Procedures and Achievable Uncertainties , 2009 .

[28]  H. Yamada,et al.  Dynamin 2 is required for actin assembly in phagocytosis in Sertoli cells. , 2009, Biochemical and biophysical research communications.

[29]  K. Cortese,et al.  The GTPase-Activating Protein GRAF1 Regulates the CLIC/GEEC Endocytic Pathway , 2008, Current Biology.

[30]  B. Hyman,et al.  Physical and functional connection between auxilin and dynamin during endocytosis , 2006, The EMBO journal.

[31]  T. Kirchhausen,et al.  Dynasore, a cell-permeable inhibitor of dynamin. , 2006, Developmental cell.

[32]  R. Abagyan,et al.  Small molecule inhibitors of dynamin I GTPase activity: development of dimeric tyrphostins. , 2005, Journal of medicinal chemistry.

[33]  M. Kirkham,et al.  Clathrin-independent endocytosis: new insights into caveolae and non-caveolar lipid raft carriers. , 2005, Biochimica et biophysica acta.

[34]  Andrea C. Pfeifer,et al.  Dynamics of GBF1, a Brefeldin A-sensitive Arf1 exchange factor at the Golgi. , 2005, Molecular biology of the cell.

[35]  K. Sandvig,et al.  Membrane ruffling and macropinocytosis in A431 cells require cholesterol. , 2002, Journal of cell science.

[36]  Pranav Sharma,et al.  GPI-anchored proteins are delivered to recycling endosomes via a distinct cdc42-regulated, clathrin-independent pinocytic pathway. , 2002, Developmental cell.

[37]  E. Gold,et al.  Dynamin 2 Is Required for Phagocytosis in Macrophages , 1999, The Journal of experimental medicine.

[38]  J. Bonifacino,et al.  ADP-Ribosylation Factor 1 (ARF1) Regulates Recruitment of the AP-3 Adaptor Complex to Membranes , 1998, The Journal of cell biology.

[39]  S. Schmid,et al.  Domain structure and intramolecular regulation of dynamin GTPase , 1997, The EMBO journal.

[40]  S. Schmid,et al.  Dynamin Self-assembly Stimulates Its GTPase Activity* , 1996, The Journal of Biological Chemistry.

[41]  S. Schmid,et al.  Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding , 1995, Nature.

[42]  John R. Rodman,et al.  Reports , 1919, Restoration & Management Notes.

[43]  Sudha Kumari,et al.  ARF1 is directly involved in dynamin-independent endocytosis , 2008, Nature Cell Biology.

[44]  Igor Nabiev,et al.  Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells. , 2004, Analytical biochemistry.