Tidal evolution of discy dwarf galaxies in the Milky Way potential: the formation of dwarf spheroidals

We conduct high-resolution collisionless N-body simulations to investigate the tidal evolution of dwarf galaxies on an eccentric orbit in the Milky Way (MW) potential. The dwarfs originally consist of a low surface brightness stellar disk embedded in a cosmologically motivated dark matter halo. During 10 Gyr of dynamical evolution and after 5 pericentre passages the dwarfs suffer substantial mass loss and their stellar component undergoes a major morphological transformation from a disk to a bar and finally to a spheroid. The bar is preserved for most of the time as the angular momentum is transferred outside the galaxy. A dwarf spheroidal (dSph) galaxy is formed via gradual shortening of the bar. This work thus provides a comprehensive quantitative explanation of a potentially crucial morphological transformation mechanism for dwarf galaxies that operates in groups as well as in clusters. We compare three cases with different initial inclinations of the disk and find that the evolution is fastest when the disk is coplanar with the orbit. Despite the strong tidal perturbations and mass loss the dwarfs remain dark matter dominated. For most of the time the 1D stellar velocity dispersion, �, follows the maximum circular velocity, Vmax, and they are both good tracers of the bound mass. Specifically, we find that Mbound / V 3.5 max � )

[1]  Kathryn V. Johnston,et al.  Measuring mass-loss rates from Galactic satellites , 1998 .

[2]  P. Hintzen,et al.  The structure of host galaxies of radio-loud quasars and possible triggering mechanisms for quasar activity , 1989 .

[3]  Mario Mateo,et al.  The Velocity Dispersion Profile of the Remote Dwarf Spheroidal Galaxy Leo I: A Tidal Hit and Run? , 2007, 0708.1327.

[4]  Ben Moore,et al.  Generating Equilibrium Dark Matter Halos: Inadequacies of the Local Maxwellian Approximation , 2003, astro-ph/0309517.

[5]  STScI,et al.  The Tumultuous Lives of Galactic Dwarfs and the Missing Satellites Problem , 2004 .

[6]  Mike Irwin,et al.  Structural parameters for the Galactic dwarf spheroidals , 1995 .

[7]  J. Stadel,et al.  Density Profiles of Cold Dark Matter Substructure: Implications for the Missing-Satellites Problem , 2003, astro-ph/0312194.

[8]  M. Irwin,et al.  A dynamical study of the Ursa Minor dwarf spheroidal galaxy , 1994 .

[9]  Michael Kuhlen,et al.  Formation and Evolution of Galaxy Dark Matter Halos and Their Substructure , 2007, astro-ph/0703337.

[10]  Ewa L. Łokas,et al.  Dark matter distribution in dwarf spheroidal galaxies , 2002 .

[11]  Gary A. Mamon,et al.  Dark matter distribution in the Draco dwarf from velocity moments , 2004, astro-ph/0411694.

[12]  N. W. Evans,et al.  Dark matter in dwarf spheroidals – II. Observations and modelling of Draco , 2001, astro-ph/0109450.

[13]  Potsdam,et al.  The Dark Side of the Halo Occupation Distribution , 2003, astro-ph/0308519.

[14]  Thorsten Lisker,et al.  Virgo Cluster Early-Type Dwarf Galaxies with the Sloan Digital Sky Survey. III. Subpopulations: Distributions, Shapes, Origins , 2007, astro-ph/0701429.

[15]  M. Irwin,et al.  Life at the periphery of the Local Group: the kinematics of the Tucana dwarf galaxy , 2009, 0903.4635.

[16]  Francisco Prada,et al.  Where Are the Missing Galactic Satellites? , 1999, astro-ph/9901240.

[17]  C. Alcock,et al.  Is the SMC Bound to the LMC? The Hubble Space Telescope Proper Motion of the SMC , 2006, astro-ph/0606240.

[18]  Helmut Jerjen,et al.  Near-field Cosmology with Dwarf Elliptical Galaxies , 2005 .

[19]  Pavel Kroupa,et al.  Dwarf spheroidal satellite galaxies without dark matter , 1997 .

[20]  L. Mayer,et al.  The anatomy of Leo I: how tidal tails affect the kinematics , 2008, 0804.0204.

[21]  Joachim Stadel,et al.  The Structural evolution of substructure , 2003 .

[22]  Alan McConnachie,et al.  The Cold Dark Matter Halos of Local Group Dwarf Spheroidals , 2007 .

[23]  Savvas M. Koushiappas,et al.  Precise constraints on the dark matter content of Milky Way dwarf galaxies for gamma-ray experiments , 2007 .

[24]  M. Kaplinghat,et al.  Proper Motion of Milky Way Dwarf Spheroidals from Line-of-Sight Velocities , 2008, 0805.0795.

[25]  The sense of rotation of subhaloes in cosmological dark matter haloes , 2005, astro-ph/0512156.

[26]  V. Debattista,et al.  Morphological evolution of discs in clusters , 2005 .

[27]  Inside the whale: the structure and dynamics of the isolated Cetus dwarf spheroidal , 2006, astro-ph/0612293.

[28]  E. Łokas The mass and velocity anisotropy of the Carina, Fornax, Sculptor and Sextans dwarf spheroidal galaxies , 2009 .

[29]  E. Olszewski,et al.  The mass-to-light ratios of the draco and ursa minor dwarf spheroidal galaxies. I. Radial velocities from multifiber spectroscopy , 1995 .

[30]  B. Warner,et al.  Dwarf nova oscillations and quasi-periodic oscillations in cataclysmic variables - II. A low-inertia magnetic accretor model , 2002, astro-ph/0204484.

[31]  The Dynamics of Sinking Satellites around Disk Galaxies: A Poor Man’s Alternative to High-Resolution Numerical Simulations , 2000, astro-ph/0012305.

[32]  B. Robertson,et al.  Are the Magellanic Clouds on Their First Passage about the Milky Way? , 2007, astro-ph/0703196.

[33]  Joshua D. Simon,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE KINEMATICS OF THE ULTRA-FAINT MILKY WAY SATELLITES: SOLVING THE MISSING SATELLITE PROBLEM , 2022 .

[34]  Luis A. Martinez-Vaquero,et al.  Constrained simulations of the local universe – I. Mass and motion in the local volume , 2007, 0704.3385.

[35]  On the life and death of satellite haloes , 2003, astro-ph/0301271.

[36]  Alan W. McConnachie,et al.  The Tidal Evolution of Local Group Dwarf Spheroidals , 2007, 0708.3087.

[37]  F. Governato,et al.  The Formation of a Realistic Disk Galaxy in Λ-dominated Cosmologies , 2004 .

[38]  Mario Mateo,et al.  DWARF GALAXIES OF THE LOCAL GROUP , 1998, astro-ph/9810070.

[39]  Abraham Loeb,et al.  In the Beginning: The First Sources of Light and the Reionization of the Universe , 2000 .

[40]  M. Rees,et al.  On dwarf elliptical galaxies and the faint blue counts , 1992 .

[41]  Fabio Governato,et al.  Forming disc galaxies in ΛCDM simulations , 2006 .

[42]  Is the dark halo of our Galaxy spherical , 2003, astro-ph/0309579.

[43]  Slawomir Piatek,et al.  The effect of galactic tides on the apparent mass-to-light ratios in dwarf spheroidal galaxies , 1995 .

[44]  D. Weinberg,et al.  Reionization and the Abundance of Galactic Satellites , 2000, astro-ph/0002214.

[45]  George Lake,et al.  Dark Matter Substructure within Galactic Halos , 1999, astro-ph/9907411.

[46]  E. Athanassoula Bar-Halo Interaction and Bar Growth , 2002 .

[47]  Daisuke Nagai,et al.  The Effect of Gas Cooling on the Shapes of Dark Matter Halos , 2004, astro-ph/0405189.

[48]  Sangmo Tony Sohn,et al.  Exploring Halo Substructure with Giant Stars. X. Extended Dark Matter or Tidal Disruption?: The Case for the Leo I Dwarf Spheroidal Galaxy , 2007 .

[49]  G. Lake,et al.  Dark matter haloes within clusters , 1998, astro-ph/9801192.

[50]  Jan T. Kleyna,et al.  The tidal stripping of satellites , 2005, astro-ph/0506687.

[51]  Gary A. Mamon,et al.  Mass modelling of dwarf spheroidal galaxies: the effect of unbound stars from tidal tails and the Milky Way , 2007 .

[52]  Mario Mateo,et al.  Internal Kinematics of the Fornax Dwarf Spheroidal Galaxy , 2005 .

[53]  Vanessa Hill,et al.  The Kinematic Status and Mass Content of the Sculptor Dwarf Spheroidal Galaxy , 2008, 0802.4220.

[54]  Andreas Koch,et al.  The Observed Properties of Dark Matter on Small Spatial Scales , 2007 .

[55]  Dynamical Friction and the Evolution of Satellites in Virialized Halos: The Theory of Linear Response , 1999, astro-ph/9907088.

[56]  S. Majewski,et al.  Modeling the Structure and Dynamics of Dwarf Spheroidal Galaxies with Dark Matter and Tides , 2007, 0712.4312.

[57]  Roberto Ragazzoni,et al.  The Elongated Structure of the Hercules Dwarf Spheroidal Galaxy from Deep Large Binocular Telescope Imaging , 2007 .

[58]  R. H. Miller,et al.  Dwarf spheroidal galaxies and resonant orbital coupling , 1989 .

[59]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[60]  S. Faber,et al.  Contraction of Dark Matter Galactic Halos Due to Baryonic Infall , 1986 .

[61]  L. Mayer,et al.  Early gas stripping as the origin of the darkest galaxies in the Universe , 2007, Nature.

[62]  Eva K. Grebel,et al.  The Progenitors of Dwarf Spheroidal Galaxies , 2002, astro-ph/0301025.

[63]  Fabio Governato,et al.  The Metamorphosis of Tidally Stirred Dwarf Galaxies , 2001, astro-ph/0103430.

[64]  E. Łokas Velocity dispersions of dwarf spheroidal galaxies: dark matter versus MOND , 2001 .

[65]  M. Mateo,et al.  Systemic Proper Motions of Milky Way Satellites from Stellar Redshifts: The Carina, Fornax, Sculptor, and Sextans Dwarf Spheroidals , 2008, 0810.1511.

[66]  Resolving the Structure of Cold Dark Matter Halos , 2000, astro-ph/0006343.