Transcriptomic cytoarchitecture reveals principles of human neocortex organization

Variation in cortical cytoarchitecture is the basis for histology-based definition of cortical areas, such as Brodmann areas. Single cell transcriptomics enables higher-resolution characterization of cell types in human cortex, which we used to revisit the idea of the canonical cortical microcircuit and to understand functional areal specialization. Deeply sampled single nucleus RNA-sequencing of eight cortical areas spanning cortical structural variation showed highly consistent cellular makeup for 24 coarse cell subclasses. However, proportions of excitatory neuron subclasses varied strikingly, reflecting differences in intra- and extracortical connectivity across primary sensorimotor and association cortices. Astrocytes and oligodendrocytes also showed differences in laminar organization across areas. Primary visual cortex showed dramatically different organization, including major differences in the ratios of excitatory to inhibitory neurons, expansion of layer 4 excitatory neuron types and specialized inhibitory neurons. Finally, gene expression variation in conserved neuron subclasses predicts differences in synaptic function across areas. Together these results provide a refined cellular and molecular characterization of human cortical cytoarchitecture that reflects functional connectivity and predicts areal specialization.

[1]  H. S. Meyer,et al.  Connectomic comparison of mouse and human cortex , 2022, Science.

[2]  Róbert Pálovics,et al.  A human brain vascular atlas reveals diverse mediators of Alzheimer’s risk , 2022, Nature.

[3]  R. Sillitoe,et al.  Ankyrin-R Links Kv3.3 to the Spectrin Cytoskeleton and Is Required for Purkinje Neuron Survival , 2021, The Journal of Neuroscience.

[4]  E. Lein,et al.  Conservation and divergence in cortical cellular organization between human and mouse revealed by single-cell transcriptome imaging , 2021, bioRxiv.

[5]  Evan Z. Macosko,et al.  Comparative cellular analysis of motor cortex in human, marmoset and mouse , 2021, Nature.

[6]  Hongkui Zeng,et al.  Spatially resolved cell atlas of the mouse primary motor cortex by MERFISH , 2021, Nature.

[7]  P. Hof,et al.  Redefining varicose projection astrocytes in primates , 2021, Glia.

[8]  J. DeFelipe,et al.  Variation in Pyramidal Cell Morphology Across the Human Anterior Temporal Lobe , 2021, Cerebral cortex.

[9]  Hongkui Zeng,et al.  A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation , 2020, Cell.

[10]  M. Büttner,et al.  scCODA is a Bayesian model for compositional single-cell data analysis , 2020, Nature Communications.

[11]  Philipp Berens,et al.  Phenotypic variation of transcriptomic cell types in mouse motor cortex , 2020, Nature.

[12]  Satrajit S. Ghosh,et al.  A multimodal cell census and atlas of the mammalian primary motor cortex , 2020, Nature.

[13]  P. Hof,et al.  Cortical Interlaminar Astrocytes Are Generated Prenatally, Mature Postnatally, and Express Unique Markers in Human and Nonhuman Primates. , 2020, Cerebral cortex.

[14]  Chris P. Ponting,et al.  Identification of region-specific astrocyte subtypes at single cell resolution , 2020, Nature Communications.

[15]  Evan Z. Macosko,et al.  An integrated transcriptomic and epigenomic atlas of mouse primary motor cortex cell types , 2020, bioRxiv.

[16]  P. Hof,et al.  Cortical interlaminar astrocytes across the therian mammal radiation , 2019, The Journal of comparative neurology.

[17]  J. Rubenstein,et al.  Excitation-inhibition balance as a framework for investigating mechanisms in neuropsychiatric disorders , 2019, Molecular Psychiatry.

[18]  Trygve E Bakken,et al.  Transcriptomic evidence that von Economo neurons are regionally specialized extratelencephalic-projecting excitatory neurons , 2019, Nature Communications.

[19]  R. Satija,et al.  Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression , 2019, Genome Biology.

[20]  Lars E. Borm,et al.  Molecular Architecture of the Mouse Nervous System , 2018, Cell.

[21]  Nicola Palomero-Gallagher,et al.  Cortical layers: Cyto-, myelo-, receptor- and synaptic architecture in human cortical areas , 2017, NeuroImage.

[22]  Jennifer I. Luebke,et al.  Pyramidal Neurons Are Not Generalizable Building Blocks of Cortical Networks , 2017, Front. Neuroanat..

[23]  Allan R. Jones,et al.  Comprehensive cellular‐resolution atlas of the adult human brain , 2016, The Journal of comparative neurology.

[24]  Jesper Andersson,et al.  A multi-modal parcellation of human cerebral cortex , 2016, Nature.

[25]  Eric E. Schadt,et al.  variancePartition: interpreting drivers of variation in complex gene expression studies , 2016, BMC Bioinformatics.

[26]  Staci A. Sorensen,et al.  Adult Mouse Cortical Cell Taxonomy Revealed by Single Cell Transcriptomics , 2016 .

[27]  K. Amunts,et al.  Architectonic Mapping of the Human Brain beyond Brodmann , 2015, Neuron.

[28]  H. Barbas,et al.  Motor cortex layer 4: less is more , 2015, Trends in Neurosciences.

[29]  David G. Jones,et al.  Classic and Golli Myelin Basic Protein have distinct developmental trajectories in human visual cortex , 2015, Front. Neurosci..

[30]  Masahiko Watanabe,et al.  Involvement of diacylglycerol kinase β in the spine formation at distal dendrites of striatal medium spiny neurons , 2015, Brain Research.

[31]  Kenneth D Harris,et al.  A genuine layer 4 in motor cortex with prototypical synaptic circuit connectivity , 2014, eLife.

[32]  Jon H Kaas,et al.  Histological features of layers and sublayers in cortical visual areas V1 and V2 of chimpanzees, macaque monkeys, and humans , 2014, Eye and brain.

[33]  H. Barbas,et al.  Area 4 has layer IV in adult primates , 2014, The European journal of neuroscience.

[34]  Robert Gentleman,et al.  Software for Computing and Annotating Genomic Ranges , 2013, PLoS Comput. Biol..

[35]  Erik Aronesty,et al.  Comparison of Sequencing Utility Programs , 2013 .

[36]  Simon Regard,et al.  ["Less is more"]. , 2013, Revue medicale suisse.

[37]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[38]  K. Rockland,et al.  Area‐specific substratification of deep layer neurons in the rat cortex , 2012, The Journal of comparative neurology.

[39]  Henry Markram,et al.  The Neocortical Column , 2012, Front. Neuroanat..

[40]  L. Krubitzer,et al.  Cortical evolution in mammals: The bane and beauty of phenotypic variability , 2012, Proceedings of the National Academy of Sciences.

[41]  Allan R. Jones,et al.  Transcriptional Architecture of the Primate Neocortex , 2012, Neuron.

[42]  Edward M Callaway,et al.  Morphology of superior colliculus‐ and middle temporal area‐projecting neurons in primate primary visual cortex , 2012, The Journal of comparative neurology.

[43]  D. V. van Essen,et al.  Mapping Human Cortical Areas In Vivo Based on Myelin Content as Revealed by T1- and T2-Weighted MRI , 2011, The Journal of Neuroscience.

[44]  Javier de Felipe Oroquieta,et al.  Pyramidal cells in prefrontal cortex: comparative observations reveal unparalleled specializations in neuronal structure among primate species , 2011 .

[45]  J. Ojemann,et al.  Uniquely Hominid Features of Adult Human Astrocytes , 2009, The Journal of Neuroscience.

[46]  D. O'Leary,et al.  Genetic regulation of arealization of the neocortex , 2008, Current Opinion in Neurobiology.

[47]  Doron Lancet,et al.  Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification , 2005, Bioinform..

[48]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[49]  J. Hornung,et al.  Distribution of GABA-containing neurons in human frontal cortex: a quantitative immunocytochemical study , 1994, Anatomy and Embryology.

[50]  W. Fries,et al.  Large layer VI cells in macaque striate cortex (Meynert cells) project to both superior colliculus and prestriate visual area V5 , 2004, Experimental Brain Research.

[51]  D. O'Leary,et al.  Distinct Actions of Emx1, Emx2, andPax6 in Regulating the Specification of Areas in the Developing Neocortex , 2002, The Journal of Neuroscience.

[52]  Pasko Rakic,et al.  Independent parcellation of the embryonic visual cortex and thalamus revealed by combinatorial Eph/ephrin gene expression , 2001, Current Biology.

[53]  G. Elston,et al.  Cortical integration in the visual system of the macaque monkey: large-scale morphological differences in the pyramidal neurons in the occipital, parietal and temporal lobes , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[54]  M. Cynader,et al.  Quantitative distribution of GABA-immunopositive and -immunonegative neurons and synapses in the monkey striate cortex (area 17). , 1992, Cerebral cortex.

[55]  E. G. Jones,et al.  Numbers and proportions of GABA-immunoreactive neurons in different areas of monkey cerebral cortex , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[56]  J. Horton,et al.  Mapping of cytochrome oxidase patches and ocular dominance columns in human visual cortex. , 1984, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[57]  W Fries,et al.  Large layer VI neurons of monkey striate cortex (Meynert cells) project to the superior colliculus , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[58]  J. Horton,et al.  CYTOCHROME OXIDASD MAPPING OF PATCHES AND OCULAR DOMINANCE COLUMNS IN HUMAN VISUAL CORTEX , 1983 .

[59]  R. Hassler Comparative Anatomy of the Central Visual Systems in Day- and Night-active Primates , 1966 .

[60]  G. Smith,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. , 1927 .