The interstellar N2 abundance towards HD 124314 from far-ultraviolet observations

The abundance of interstellar molecular nitrogen (N2) is of considerable importance: models of steady-state gas-phase interstellar chemistry, together with millimetre-wavelength observations of interstellar N2H+ in dense molecular clouds predict that N2 should be the most abundant nitrogen-bearing molecule in the interstellar medium. Previous attempts to detect N2 absorption in the far-ultraviolet or infrared (ice features) have hitherto been unsuccessful. Here we report the detection of interstellar N2 at far-ultraviolet wavelengths towards the moderately reddened star HD 124314 in the constellation of Centaurus. The N2 column density is larger than expected from models of diffuse clouds and significantly smaller than expected for dense molecular clouds. Moreover, the N2 abundance does not explain the observed variations in the abundance of atomic nitrogen (N I) towards high-column-density sightlines, implying that the models of nitrogen chemistry in the interstellar medium are incomplete.

[1]  D. Morton,et al.  Atomic Data for Resonance Absorption Lines. III. Wavelengths Longward of the Lyman Limit for the Elements Hydrogen to Gallium , 2003 .

[2]  N. Walborn The space distribution of the O stars in the solar neighborhood. , 1973 .

[3]  Paul F. Goldsmith,et al.  Gas-phase chemistry in dense interstellar clouds including grain surface molecular depletion and desorption , 1995 .

[4]  D. York,et al.  Infrared colors and the diffuse interstellar bands , 1978 .

[5]  F. Petit,et al.  H$\mathsf{_{3}^{+}}$ and other species in the diffuse cloud towards $\mathsf{\zeta}$ Persei: A new detailed model , 2004 .

[6]  A. R. Hyland,et al.  Infrared observations of a BOK globule in the southern Coalsack. , 1980 .

[7]  A. Hedin Extension of the MSIS Thermosphere Model into the middle and lower atmosphere , 1991 .

[8]  Ivan Hubeny,et al.  A Grid of Non-LTE Line-blanketed Model Atmospheres of O-Type Stars , 2002, astro-ph/0210157.

[9]  F. Petit H~3^+ and other species in the diffuse cloud towards Persei: A new detailed model , 2004 .

[10]  J. Black,et al.  The photodissociation and chemistry of interstellar CO , 1988 .

[11]  S. Federman,et al.  FUSE Measurements of Rydberg Bands of Interstellar CO between 925 and 1150 Å , 2003, astro-ph/0309363.

[12]  J. B. Joyce,et al.  On-Orbit Performance of the Far Ultraviolet Spectroscopic Explorer Satellite , 2000 .

[13]  Y. Viala Chemical equilibrium from diffuse to dense interstellar clouds. I: Galactic molecular clouds , 1986 .

[14]  Edward J. Shaya,et al.  The Abundance of CO in Diffuse Interstellar Clouds , 1979 .

[15]  The Abundances of Solid N2 and Gaseous CO2 in Interstellar Dense Molecular Clouds , 2001 .

[16]  Kenji Ito,et al.  Line Oscillator Strength Measurements in the 0-0 Band of the c′4 1Σu+ ← X 1Σg+ Transition of N2 , 2000 .

[17]  On the Origin of the High-Ionization Intermediate-Velocity Gas toward HD 14434 , 2003, astro-ph/0304196.

[18]  D. Hampshire,et al.  Self-shielding in the solar nebula , 2002 .

[19]  L. Ziurys,et al.  A survey of N2H+ in dense clouds: Implications for interstellar nitrogen and ion-molecule chemistry , 1992 .

[20]  M. Peimbert,et al.  A catalogue of galactic O stars and the ionization of the low density interstellar medium by runaway stars. , 1974 .

[21]  L. Ziurys,et al.  Estimates of N2 abundances in dense molecular clouds , 1992 .

[22]  et al,et al.  Overview of the Far Ultraviolet Spectroscopic Explorer Mission , 2000, astro-ph/0005529.

[23]  B. Savage,et al.  A survey of interstellar H I from L-alpha absorption measurements. II , 1978 .

[24]  D. Ebbets,et al.  Spectroscopic studies of O-type stars. VII. Rotational velocities V*sin(i) and evidence for macroturbulent motions. , 1977 .