Two-phase Pareto local search for the biobjective traveling salesman problem

In this work, we present a method, called Two-Phase Pareto Local Search, to find a good approximation of the efficient set of the biobjective traveling salesman problem. In the first phase of the method, an initial population composed of a good approximation of the extreme supported efficient solutions is generated. We use as second phase a Pareto Local Search method applied to each solution of the initial population. We show that using the combination of these two techniques: good initial population generation plus Pareto Local Search gives better results than state-of-the-art algorithms. Two other points are introduced: the notion of ideal set and a simple way to produce near-efficient solutions of multiobjective problems, by using an efficient single-objective solver with a data perturbation technique.

[1]  M. Ehrgott,et al.  Connectedness of efficient solutions in multiple criteria combinatorial optimization , 1997 .

[2]  Thomas Stützle,et al.  Pareto Local Optimum Sets in the Biobjective Traveling Salesman Problem: An Experimental Study , 2004, Metaheuristics for Multiobjective Optimisation.

[3]  E. L. Ulungu,et al.  MOSA method: a tool for solving multiobjective combinatorial optimization problems , 1999 .

[4]  Pierre Hansen,et al.  Bicriterion Path Problems , 1980 .

[5]  Evripidis Bampis,et al.  A Dynasearch Neighborhood for the Bicriteria Traveling Salesman Problem , 2004, Metaheuristics for Multiobjective Optimisation.

[6]  Keld Helsgaun,et al.  An effective implementation of the Lin-Kernighan traveling salesman heuristic , 2000, Eur. J. Oper. Res..

[7]  Marco Laumanns,et al.  Why Quality Assessment Of Multiobjective Optimizers Is Difficult , 2002, GECCO.

[8]  Gerhard Reinelt,et al.  TSPLIB - A Traveling Salesman Problem Library , 1991, INFORMS J. Comput..

[9]  Andrzej Jaszkiewicz,et al.  Genetic local search for multi-objective combinatorial optimization , 2022 .

[10]  M. Hansen,et al.  Evaluating the quality of approximations to the non-dominated set , 1998 .

[11]  Thomas Stützle,et al.  Stochastic Local Search Algorithms for Multiobjective Combinatorial Optimization , 2006, Handbook of Approximation Algorithms and Metaheuristics.

[12]  Matthieu Basseur Design of cooperative algorithms for multi-objective optimization: application to the flow-shop scheduling problem , 2006, 4OR.

[13]  Brian W. Kernighan,et al.  An Effective Heuristic Algorithm for the Traveling-Salesman Problem , 1973, Oper. Res..

[14]  Thomas Stützle,et al.  On local optima in multiobjective combinatorial optimization problems , 2007, Ann. Oper. Res..

[15]  Matthias Ehrgott,et al.  Multicriteria Optimization , 2005 .

[16]  Giovanni Manzini,et al.  Perturbation: An Efficient Technique for the Solution of Very Large Instances of the Euclidean TSP , 1996, INFORMS J. Comput..

[17]  Andrzej Jaszkiewicz,et al.  On the performance of multiple-objective genetic local search on the 0/1 knapsack problem - a comparative experiment , 2002, IEEE Trans. Evol. Comput..

[18]  Hisao Ishibuchi,et al.  Hybrid Evolutionary Algorithms , 2007 .

[19]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[20]  Horst W. Hamacher,et al.  On spanning tree problems with multiple objectives , 1994, Ann. Oper. Res..

[21]  S. Holm A Simple Sequentially Rejective Multiple Test Procedure , 1979 .

[22]  Thomas Stützle,et al.  A Two-Phase Local Search for the Biobjective Traveling Salesman Problem , 2003, EMO.

[23]  Matthias Ehrgott,et al.  Bound sets for biobjective combinatorial optimization problems , 2007, Comput. Oper. Res..

[24]  Y. Aneja,et al.  BICRITERIA TRANSPORTATION PROBLEM , 1979 .

[25]  Gerald S. Rogers,et al.  Mathematical Statistics: A Decision Theoretic Approach , 1967 .

[26]  Thomas Sty Clusters of Non-dominated Solutions in Multiobjective Combinatorial Optimization. , 2006 .

[27]  Anthony Przybylski,et al.  Two phase algorithms for the bi-objective assignment problem , 2008, Eur. J. Oper. Res..

[28]  Helena Ramalhinho Dias Lourenço,et al.  Iterated Local Search , 2001, Handbook of Metaheuristics.

[29]  Lothar Thiele,et al.  A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers , 2006 .

[30]  Piotr Czyzżak,et al.  Pareto simulated annealing—a metaheuristic technique for multiple‐objective combinatorial optimization , 1998 .

[31]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[32]  Rajeev Kumar,et al.  Pareto Evolutionary Algorithm Hybridized with Local Search for Biobjective TSP , 2007 .

[33]  Forschungsinstitut für Diskrete Chained Lin-Kernighan for Large Traveling Salesman Problems , 2003 .

[34]  Qguhm -DVNLHZLF,et al.  On the performance of multiple objective genetic local search on the 0 / 1 knapsack problem . A comparative experiment , 2000 .