Guaranteed characterization of thermal conductivity and diffusivity in presence of model uncertainty

A crucial problem that occurs when estimating physical parameters from experimental data is the computation of reliable uncertainty bounds for the estimated parameters, while accounting for uncertainty in the model and data. We introduce a new numerical method that contributes to the solution of this problem. We show how to deal with uncertain nuisance parameters located within prior intervals. The method advocated in this article makes it possible to detect the absence of solution when the model hypotheses are inconsistent with the data. An analysis of the sensitivity of estimated uncertainty bounds to the nuisance parameters is also conducted. These features are illustrated with actual data collected on a thermal device used to estimate simultaneously the conductivity and diffusivity of materials.

[1]  Eric Walter,et al.  Guaranteed nonlinear parameter estimation from bounded-error data via interval analysis , 1993 .

[2]  Yves Candau,et al.  A simultaneous characterization of thermal conductivity and diffusivity of polymer materials by a periodic method , 2004 .

[3]  Eric Walter,et al.  Interval methods for nonlinear identification and robust control , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[4]  Aleksey V. Nenarokomov,et al.  Uncertainties in parameter estimation: the inverse problem , 1995 .

[5]  M. N. Khan,et al.  Transient hot-strip method for simultaneously measuring thermal conductivity and thermal diffusivity of solids and fluids , 1979 .

[6]  Eric Walter,et al.  Guaranteed estimation of electrochemical parameters by set inversion using interval analysis , 2000 .

[7]  Eric Tang-Kwor Contribution au développement de méthodes périodiques de mesure de propriétés thermophysiques des matériaux opaques , 1998 .

[8]  C. Glorieux,et al.  Photoacoustic and photopyroelectric approach to calorimetric studies , 1997 .

[9]  C. Moyne,et al.  Contact thermique périodique : un modèle quadripolaire et une expérience , 2002 .

[10]  Luc Jaulin,et al.  Applied Interval Analysis , 2001, Springer London.

[11]  S. Gustafsson,et al.  Thermal transport studies of electrically conducting materials using the transient hot-strip technique , 1986 .

[12]  Witold Pedrycz,et al.  Bounding approaches to system identification , 1997 .

[13]  E. Hansen Global optimization using interval analysis — the multi-dimensional case , 1980 .

[14]  E. Hansen Global optimization using interval analysis: The one-dimensional case , 1979 .

[15]  J. Norton,et al.  Bounding Approaches to System Identification , 1996 .

[16]  S. Gustafsson Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials , 1991 .

[17]  S. Gustafsson,et al.  THERMAL CONDUCTIVITY, THERMAL DIFFUSIVITY, AND SPECIFIC HEAT OF THIN SAMPLES FROM TRANSIENT MEASUREMENTS WITH HOT DISK SENSORS , 1994 .

[18]  Gustavo Belforte,et al.  Parameter estimation algorithms for a set-membership description of uncertainty , 1990, Autom..

[19]  M. N. Khan,et al.  Determination of the thermal‐conductivity tensor and the heat capacity of insulating solids with the transient hot‐strip method , 1981 .