Reference crop evapotranspiration derived from geo-stationary satellite imagery - a case study for the Fogera flood plain, NW-Ethiopia and the Jordan Valley, Jordan

Abstract. First results are shown of a project aiming to estimate daily values of reference crop evapotranspiration ET0 from geo-stationary satellite imagery. In particular, for Woreta, a site in the Ethiopian highland at an elevation of about 1800 m, we tested a radiation-temperature based approximate formula proposed by Makkink (MAK), adopting ET0 evaluated with the version of the Penman-Monteith equation described in the FAO Irrigation and Drainage paper 56 as the most accurate estimate. More precisely we used the latter with measured daily solar radiation as input (denoted by PMFAO-Rs). Our data set for Woreta concerns a period where the surface was fully covered with short green non-stressed vegetation. Our project was carried out in the context of the Satellite Application Facility on Land Surface Analysis (LANDSAF) facility. Among others, the scope of LANDSAF is to increase benefit from the EUMETSAT Satellite Meteosat Second Generation (MSG). In this study we applied daily values of downward solar radiation at the surface obtained from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) radiometer. In addition, air temperature at 2 m was obtained from 3-hourly forecasts provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). Both MAK and PMFAO-Rs contain the psychrometric "constant", which is proportional to air pressure, which, in turn, decreases with elevation. In order to test elevation effects we tested MAK and its LANDSAF input data for 2 sites in the Jordan Valley located about 250 m b.s.l. Except for a small underestimation of air temperature at the Ethiopian site at 1800 m, the first results of our LANDSAF-ET0 project are promising. If our approach to derive ET0 proves successfully, then the LANDSAF will be able to initiate nearly real time free distribution of ET0 for the full MSG disk.

[1]  R. Allen,et al.  History and Evaluation of Hargreaves Evapotranspiration Equation , 2003 .

[2]  Lucien Wald,et al.  Using remotely sensed solar radiation data for reference evapotranspiration estimation at a daily time step , 2008 .

[3]  F. Delclaux,et al.  Evaporation estimation on Lake Titicaca: a synthesis review and modelling , 2007 .

[4]  Martha C. Anderson,et al.  Solar radiation, longwave radiation and emergent wetland evapotranspiration estimates from satellite data in Florida, USA / Estimations à partir de données satellitales du rayonnement solaire, du rayonnement de grande longueur d’onde et de l’évapotranspiration d’une zone humide de Floride (EUA) , 2004 .

[5]  Jean-Louis Roujean,et al.  Near real‐time provision of downwelling shortwave radiation estimates derived from satellite observations , 2008 .

[6]  C. Watts,et al.  The use of remote sensing for estimating ET in NW Mexico , 2003 .

[7]  W. James Shuttleworth,et al.  Measurement and modelling evaporation for irrigated crops in north‐west Mexico , 1998 .

[8]  J. Rodríguez,et al.  Estimación de evaporación y radiación solar en el valle del Yaqui Sonora usando datos de satélite , 1999 .

[9]  C. Priestley,et al.  On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters , 1972 .

[10]  C. Schillings,et al.  Operational method for deriving high resolution direct normal irradiance from satellite data , 2004 .

[11]  Christoph Schillings,et al.  Satellite-Based Actual Evapotranspiration over Drying Semiarid Terrain in West Africa , 2007 .

[12]  P. Gavilán,et al.  Reference Evapotranspiration Estimation in a Highly Advective Semiarid Environment , 2005 .

[13]  D. Guyon,et al.  Quality analysis applied on eddy covariance measurements at complex forest sites using footprint modelling , 2005 .

[14]  G. D. Fuller,et al.  Evaporation and Transpiration , 1925, Botanical Gazette.

[15]  P. Gavilán,et al.  Comparison of Standardized Reference Evapotranspiration Equations in Southern Spain , 2008 .

[16]  L.J.M. Kroon,et al.  Fluxes in the Surface Layer Under Advective Conditions , 1991 .

[17]  P. Kerkides,et al.  Daily reference evapotranspiration estimates by the "Copais" approach , 2006 .

[18]  Evaluación lisimétrica de la evapotranspiración de referencia semihoraria calculada con el método FAO Penman-Monteith , 2000 .

[19]  Arnold F. Moene,et al.  AN INTEGRATED MSG-SCINTILLOMETER NETWORK SYSTEM TO MONITOR SENSIBLE AND LATENT HEAT FLUXES. , 2004 .

[20]  Christopher J. Watts,et al.  Use of satellite data to estimate radiation and evaporation for northwest Mexico , 1999 .

[21]  Richard G. Allen,et al.  Assessing Integrity of Weather Data for Reference Evapotranspiration Estimation , 1996 .

[22]  Marc Van Meirvenne,et al.  Spatial estimation of reference evapotranspiration in Andalusia, Spain , 2008 .

[23]  J. Stricker,et al.  Evaporation of grass under non-restricted soil moisture conditions , 2000 .

[24]  Thomas Foken,et al.  The Energy Balance Experiment EBEX-2000. Part III: Behaviour and quality of the radiation measurements , 2007 .

[25]  D. Schüttemeyer,et al.  The surface energy balance over drying semi-arid terrain in West Africa , 2005 .

[26]  Ayse Irmak,et al.  Reference and Crop Evapotranspiration in South Central Nebraska. I: Comparison and Analysis of Grass and Alfalfa-Reference Evapotranspiration , 2008 .

[27]  Sandra C. Freitas,et al.  The Satellite Application Facility for Land Surface Analysis , 2011 .

[28]  Antonio Roberto Pereira,et al.  The Priestley–Taylor parameter and the decoupling factor for estimating reference evapotranspiration , 2004 .

[29]  G. Hoogenboom,et al.  A comparison of ASCE and FAO-56 reference evapotranspiration for a 15-min time step in humid climate conditions , 2009 .

[30]  Eva Rubio,et al.  Validation of an operational model of direct recharge and evapotranspiration , 2004, SPIE Remote Sensing.

[31]  O. Hartogensis,et al.  Regional Advection Perturbations in an Irrigated Desert (RAPID) experiment , 2005 .

[32]  R. Ziemer Evaporation and transpiration , 1979 .

[33]  William P. Kustas,et al.  Inconsistencies in net radiation estimates from use of several models of instruments in a desert environment , 1998 .

[34]  B. Choudhury,et al.  First order approach for estimating unstressed transpiration from meteorological satellite data , 1995 .

[35]  A. S. Thom,et al.  Momentum, mass and heat exchange of vegetation , 1972 .

[36]  Rachel T. Pinker,et al.  Satellite estimates of surface radiative fluxes for the extended San Pedro Basin: sensitivity to aerosols , 2000 .

[37]  J. Cavero,et al.  Comparing Penman-Monteith and Priestley-Taylor approaches as reference-evapotranspiration inputs for modeling maize water-use under Mediterranean conditions , 2004 .

[38]  G. Hoogenboom,et al.  Comparison of Priestley-Taylor and FAO-56 Penman-Monteith for Daily Reference Evapotranspiration Estimation in Georgia , 2007 .

[39]  G. Pegram,et al.  A comparison of ASCAT and modelled soil moisture over South Africa, using TOPKAPI in land surface mode. , 2009 .